OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 2 — Jan. 22, 2007
  • pp: 695–703

Characteristics of photonic band gaps in woodpile three-dimensional terahertz photonic crystals

Huan Liu, Jianquan Yao, Degang Xu, and Peng Wang  »View Author Affiliations

Optics Express, Vol. 15, Issue 2, pp. 695-703 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (987 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on plane wave expansion method, complete photonic band gaps (PBGs) of a woodpile three-dimensional (3-D) terahertz (THz) photonic crystal (PC) with face-centered-tetragonal (fct) symmetry are optimized by varying structural parameters and the highest band gap ratio can reach 26.71%. In order to further optimize the complete PBGs, we propose a novel woodpile lattice with comparatively decreased symmetry and the highest band gap ratio can be increased to 27.61%. The woodpile THz PCs with two different symmetries both have a wide range of filling ratios to gain high quality complete PBGs, making the manufacturing process convenient. Woodpile 3-D PCs will be very promising materials for THz functional components.

© 2007 Optical Society of America

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(300.6270) Spectroscopy : Spectroscopy, far infrared

ToC Category:
Photonic Crystals

Original Manuscript: October 12, 2006
Revised Manuscript: November 20, 2006
Manuscript Accepted: December 7, 2006
Published: January 22, 2007

Huan Liu, Jianquan Yao, Degang Xu, and Peng Wang, "Characteristics of photonic band gaps in woodpile three-dimensional terahertz photonic crystals," Opt. Express 15, 695-703 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. H. Siegel, "Terahertz technology," IEEE Trans. Microwave Theory and Tech. 50, 910-928 (2002). [CrossRef]
  2. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002). [CrossRef] [PubMed]
  3. N. Jukam, and M. S. Sherwin, "Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si," Appl. Phys. Lett. 83, 21-23 (2003). [CrossRef]
  4. S. W. Wang, W. Lu, X. S. Chen, Z. F. Li, X. C. Shen, and W. J. Wen, "Two-dimensional photonic crystal at THz frequencies constructed by metal-coated cylinders," J. Appl. Phys. 93, 9401-9403 (2003). [CrossRef]
  5. A. Di Falco, C. Conti, and G. Assanto, "Terahertz pulse generation via optical rectification in photonic crystal microcavities," Opt. Lett. 30, 1174-1176 (2005). [CrossRef] [PubMed]
  6. H. Kurt, and D. S. Citrin, "Photonic crystals for biochemical sensing in the terahertz region," Appl. Phys. Lett. 87, 041108 (2005). [CrossRef]
  7. C. Lin, C. Chen, G. Schneider, P. Yao, S. Shi, A. Sharkawy, and D. Prather, "Wavelength scale terahertz two-dimensional photonic crystal waveguides," Opt. Express 12, 5723-5728 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-23-5723. [CrossRef] [PubMed]
  8. T. D. Drysdale, R. J. Blaikie, and D. R. S. Cumming, "Calculated and measured transmittance of a tunable metallic photonic crystal filter for terahertz frequencies," Appl. Phys. Lett. 83, 5362-5364 (2003). [CrossRef]
  9. A. L. Reynolds, H. M. H. Chong, I. G. Thayne, J. M. Arnold, P. De Maagt, "Analysis of membrane support structures for integrated antenna usage on two-dimensional photonic-bandgap structures," IEEE Trans. Microwave Theory and Tech. 49, 1254-1261 (2001). [CrossRef]
  10. A. R. Weily, K. P. Esselle, T. S. Bird, and B. C. Sanders, "Experimental woodpile EBG waveguides, bends and power dividers at microwave frequencies," Electron. Lett. 42, 32-33 (2006). [CrossRef]
  11. K. Takagi, K. Seno, and A. Kawasaki, "Fabrication of a three-dimensional terahertz photonic crystal using monosized spherical particles," Appl. Phys. Lett. 85, 3681-3683 (2004). [CrossRef]
  12. H. Liu, J. Q. Yao, E. B. Li, W. Q. Wen, Q. Zhang, and P. Wang, "Theoretical analysis of optimum parameters for complete forbidden bands of three-dimensional photonic crystals with typical lattice structures, " Acta Phys. Sin. 55, 230-238 (2006).
  13. S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Theoretical investigation of fabrication-related disorder on the properties of photonic crystals," J. Appl. Phys. 78, 1415-1418 (1995). [CrossRef]
  14. P. Kopperschmidt, "Tetragonal photonic woodpile structures," Appl. Phys. B 76, 729-734 (2003). [CrossRef]
  15. E. Özbay, E. Michel, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom, "Terahertz spectroscopy of three-dimensional photonic band-gap crystals," Opt. Lett. 19, 1155-1157 (1994). [PubMed]
  16. A. Chelnokov, S. Rowson, J.-M. Lourtioz, L. Duvillaret, and J.-L. Coutaz, "Terahertz characterisation of mechanically machined 3D photonic crystal," Electron. Lett. 33, 1981-1983 (1997). [CrossRef]
  17. A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, "Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses," Appl. Phys. Lett. 83, 4480-4482 (2003). [CrossRef]
  18. S. Shoji, H. B. Sun, and S. Kawata, "Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference," Appl. Phys. Lett. 83, 608-610 (2003). [CrossRef]
  19. Y. Lin, D. Rivera, and K. P. Chen, "Woodpile-type photonic crystals with orthorhombic or tetragonal symmetry formed through phase mask techniques," Opt. Express 14, 887-892 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-2-887. [CrossRef] [PubMed]
  20. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994). [CrossRef]
  21. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998). [CrossRef]
  22. K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990). [CrossRef] [PubMed]
  23. C. M. Anderson, and K. P. Giapis, "Larger two-dimensional photonic band gaps," Phys. Rev. Lett. 77, 2949-2952 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited