OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 2 — Jan. 22, 2007
  • pp: 714–725

Electromagnetic Momentum and Radiation Pressure derived from the Fresnel Relations

Michael E. Crenshaw  »View Author Affiliations


Optics Express, Vol. 15, Issue 2, pp. 714-725 (2007)
http://dx.doi.org/10.1364/OE.15.000714


View Full Text Article

Enhanced HTML    Acrobat PDF (191 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using the Fresnel relations as axioms, we derive a generalized electromagnetic momentum for a piecewise homogeneous medium and a different generalized momentum for a medium with a spatially varying refractive index in the Wentzel–Kramers–Brillouin (WKB) limit. Both generalized momenta depend linearly on the field, but the refractive index appears to different powers due to the difference in translational symmetry. For the case of the slowly varying index, it is demonstrated that there is negligible transfer of momentum from the electromagnetic field to the material. Such a transfer occurs at the interface between the vacuum and a homogeneous material allowing us to derive the radiation pressure from the Fresnel reflection formula. The Lorentz volume force is shown to be nil.

© 2007 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(260.2160) Physical optics : Energy transfer

ToC Category:
Physical Optics

History
Original Manuscript: December 18, 2006
Manuscript Accepted: January 7, 2007
Published: January 22, 2007

Citation
Michael E. Crenshaw, "Electromagnetic momentum and radiation pressure derived from the Fresnel relations," Opt. Express 15, 714-725 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-2-714


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. 1. H. Minkowski, Natches. Ges. Wiss. Göttingen 53 (1908); Math. Ann. 68, 472 (1910).
  2. M. Abraham, Rend. Circ. Mat. Palermo 28, 1 (1909); 30, 33 (1910). [CrossRef]
  3. A. Einstein and J. Laub, Ann. Phys. (Leipzig) 26, 541 (1908).
  4. R. Peierls, "The momentum of light in a refracting medium," Proc. R. Soc. Lond. A 347, 475-491 (1976). [CrossRef]
  5. M. Kranys, "The Minkowski and Abraham Tensors, and the non-uniqueness of non-closed systems," Int. J. Engng. Sci. 20, 1193-1213 (1982). [CrossRef]
  6. G. H. Livens, The Theory of Electricity, (Cambridge University Press, Cambridge, 1908).
  7. Y. N. Obukhov and F. W. Hehl, "Electromagnetic energy-momentum and forces in matter," Phys. Lett. A 311, 277-284 (2003). [CrossRef]
  8. J. C. Garrison and R. Y. Chiao, "Canonical and kinetic forms of the electromagnetic momentum in an ad hoc quantization scheme for a dispersive dielectric," Phys. Rev. A 70, 053826-1-8 (2004). [CrossRef]
  9. S. Antoci and L. Mihich, "A forgotten argument by Gordon uniquely selects Abraham’s tensor as the energy-momentum tensor of the electromagnetic field in homogeneous, isotropic matter," Nuovo Cim. B112, 991-1001 (1997).
  10. R. V. Jones and J. C. S. Richards, "The pressure of radiation in a refracting medium," Proc. R. Soc. London A 221, 480 (1954). [CrossRef]
  11. A. Ashkin and J. M. Dziedzic, "Radiation Pressure on a Free Liquid Surface," Phys. Rev. Lett. 30, 139-142 (1973). [CrossRef]
  12. A. F. Gibson, M. F. Kimmitt, A. O. Koohian, D. E. Evans, and G. F. D. Levy, "A Study of Radiation Pressure in a Refractive Medium by the Photon Drag Effect," Proc. R. Soc. London A 370, 303-318 (1980). [CrossRef]
  13. D. G. Lahoz and G. M. Graham, "Experimental decision on the electromagnetic momentum," J. Phys. A 15, 303-318 (1982). [CrossRef]
  14. I. Brevik, "Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor," Phys. Rep. 52, 133-201 (1979). [CrossRef]
  15. I. Brevik, "Photon-drag experiment and the electromagnetic momentum in matter," Phys. Rev. B 33, 1058-1062 (1986). [CrossRef]
  16. H. Goldstein, Classical Mechanics, 2nd Ed., (Addison-Wesley, Reading, MA, 1980).
  17. M. E. Crenshaw, "Generalized electromagnetic momentum and the Fresnel relations," Phys. Lett. A 346, 249-254, (2005). [CrossRef]
  18. J. D. Jackson, Classical Electrodynamics, 2nd Ed., (Wiley, New York, 1975).
  19. W. P. Huang, S. T. Chu, A. Goss, and S. K. Chaudhuri, "A scalar finite-difference time-domain approach to guided-wave optics," IEEE Photonics Tech. Lett. 3, 524 (1991). [CrossRef]
  20. A. Chubykalo, A. Espinoza, and R. Tzonchev, "Experimental test of the compatibility of the definitions of the electromagnetic energy density and the Poynting vector," Eur. Phys. J. D 31, 113-120 (2004). [CrossRef]
  21. M. Crenshaw and N. Akozbek, "Electromagnetic energy flux vector for a dispersive linear medium," Phys. Rev. E 73, 056613 (2006). [CrossRef]
  22. J. P. Gordon, "Radiation Forces and Momenta in Dielectric Media," Phys. Rev. A 8, 14-21 (1973). [CrossRef]
  23. M. Stone, "Phonons and Forces: Momentum versus Pseudomomentum in Moving Fluids," arXiv.org, condmat/0012316 (2000), http://arxiv.org/abs/cond-mat?papernum=0012316.
  24. M. Mansuripur, "Radiation pressure and the linear momentum of the electromagnetic field," Opt. Express 12, 5375-5401 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-22-5375. [CrossRef] [PubMed]
  25. R. Loudon, S. M. Barnett, and C. Baxter, "Theory of radiation pressure and momentum transfer in dielectrics: the photon drag effect," Phys. Rev. A 71, 063802 (2005). [CrossRef]
  26. M. Scalora, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, M. Centini, C. Sibilia, and J. W. Haus, "Radiation pressure of light pulses and conservation of linear momentum in dispersive media," Phys. Rev. E 73, 056604 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited