OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 20 — Oct. 1, 2007
  • pp: 12654–12661

Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye

Linda Lundström, Silvestre Manzanera, Pedro M. Prieto, Diego B. Ayala, Nicolas Gorceix, Jörgen Gustafsson, Peter Unsbo, and Pablo Artal  »View Author Affiliations


Optics Express, Vol. 15, Issue 20, pp. 12654-12661 (2007)
http://dx.doi.org/10.1364/OE.15.012654


View Full Text Article

Enhanced HTML    Acrobat PDF (261 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Retinal sampling poses a fundamental limit to resolution acuity in the periphery. However, reduced image quality from optical aberrations may also influence peripheral resolution. In this study, we investigate the impact of different degrees of optical correction on acuity in the periphery. We used an adaptive optics system to measure and modify the off-axis aberrations of the right eye of six normal subjects at 20° eccentricity. The system consists of a Hartmann-Shack sensor, a deformable mirror, and a channel for visual testing. Four different optical corrections were tested, ranging from foveal sphero-cylindrical correction to full correction of eccentric low- and high-order monochromatic aberrations. High-contrast visual acuity was measured in green light using a forced choice procedure with Landolt C’s, viewed via the deformable mirror through a 4.8-mm artificial pupil. The Zernike terms mainly induced by eccentricity were defocus and with- and against-the-rule astigmatism and each correction condition was successfully implemented. On average, resolution decimal visual acuity improved from 0.057 to 0.061 as the total root-mean-square wavefront error changed from 1.01 μm to 0.05 μm. However, this small tendency of improvement in visual acuity with correction was not significant. The results suggest that for our experimental conditions and subjects, the resolution acuity in the periphery cannot be improved with optical correction.

© 2007 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(330.1070) Vision, color, and visual optics : Vision - acuity
(330.5510) Vision, color, and visual optics : Psychophysics
(330.6130) Vision, color, and visual optics : Spatial resolution
(330.7310) Vision, color, and visual optics : Vision

ToC Category:
Vision, color, and visual optics

History
Original Manuscript: June 18, 2007
Revised Manuscript: August 13, 2007
Manuscript Accepted: September 11, 2007
Published: September 18, 2007

Virtual Issues
Vol. 2, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Linda Lundström, Silvestre Manzanera, Pedro M. Prieto, Diego B. Ayala, Nicolas Gorceix, Jörgen Gustafsson, Peter Unsbo, and Pablo Artal, "Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye," Opt. Express 15, 12654-12661 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-20-12654


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. N. Thibos, D. J. Walsh, and F. E. Cheney, "Vision beyond the resolution limit: aliasing in the periphery," Vision Res. 27, 2193-2197 (1987). [CrossRef] [PubMed]
  2. P. Artal, A. M. Derrington, and E. Colombo, "Refraction, aliasing, and the absence of motion reversals in peripheral vision," Vision Res. 35, 939-947 (1995). [CrossRef] [PubMed]
  3. D. R. Williams, P. Artal, R. Navarro, M. J. McMahon, and D. H. Brainard, "Off-axis optical quality and retinal sampling in the human eye," Vision Res. 36, 1103-1114 (1996). [CrossRef] [PubMed]
  4. R. Navarro, P. Artal, and D. R. Williams, "Modulation transfer of the human eye as a function of retinal eccentricity," J. Opt. Soc. Am. A 10, 201-212 (1993). [CrossRef] [PubMed]
  5. A. Guirao and P. Artal, "Off-axis monochromatic aberrations estimated from double pass measurements in the human eye," Vision Res. 39, 207-217 (1999). [CrossRef] [PubMed]
  6. A. Seidemann, F. Schaeffel, A. Guirao, N. Lopez-Gil, and P. Artal, "Peripheral refractive errors in myopic, emmetropic, and hyperopic young subjects," J. Opt. Soc. Am. A 19, 2363-2373 (2002). [CrossRef]
  7. L. Lundström, J. Gustafsson, and P. Unsbo. "Vision evaluation of eccentric refractive correction," accepted for publication in Optom. Vision Sci. (2007).
  8. M. Millodot, C. A. Johnson, A. Lamont, and H. W. Leibowitz, "Effect of dioptrics on peripheral visual-acuity," Vision Res. 15, 1357-1362 (1975). [CrossRef] [PubMed]
  9. F. Rempt, J. Hoogerheide, and W. P. H. Hoogenboom, "Influence of correction of peripheral refractive errors on peripheral static vision," Ophthalmologica 173, 128-135 (1976). [CrossRef] [PubMed]
  10. L. N. Thibos, D. L. Still, and A. Bradley, "Characterization of spatial aliasing and contrast sensitivity in peripheral vision," Vision Res. 36, 249-258 (1996). [CrossRef] [PubMed]
  11. Y. Z. Wang, L. N. Thibos, and A. Bradley, "Effects of refractive error on detection acuity and resolution acuity in peripheral vision," Invest. Ophthalmol. Visual Sci. 38, 2134-2143 (1997). [PubMed]
  12. D. W. Jackson, E. A. Paysse, K. R. Wilhelmus, M. A. Hussein, G. Rosby, and D. K. Coats, "The effect of off-the-visual-axis retinoscopy on objective refractive measurement," Am. J. Ophthalmol. 137, 1101-1104 (2004). [CrossRef] [PubMed]
  13. L. Lundström, J. Gustafsson, I. Svensson, and P. Unsbo, "Assessment of objective and subjective eccentric refraction," Optom. Vision Sci. 82, 298-306 (2005). [CrossRef] [PubMed]
  14. R. S. Anderson, "The selective effect of optical defocus on detection and resolution acuity in peripheral vision," Curr. Eye Res. 15, 351-353 (1996). [CrossRef] [PubMed]
  15. J. Rovamo, V. Virsu, P. Laurinen, and L. Hyvarinen, "Resolution of gratings oriented along and across meridians in peripheral vision," Invest. Ophthalmol. Visual Sci. 23, 666-670 (1982). [PubMed]
  16. J. Gustafsson, E. Terenius, J. Buchheister, and P. Unsbo, "Peripheral astigmatism in emmetropic eyes," Ophthalmic Physiol. Opt. 21, 393-400 (2001). [CrossRef] [PubMed]
  17. E. J. Fernández, I. Iglesias, and P. Artal, "Closed-loop adaptive optics in the human eye," Opt. Lett. 26, 746-748 (2001). [CrossRef]
  18. E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, "Adaptive optics visual simulator," J. Refract. Surg. 18, 634-638 (2002).
  19. P. M. Prieto, F. Vargas-Martin, S. Goelz, and P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17, 1388-1398 (2000). [CrossRef]
  20. L. Lundström and P. Unsbo, "Transformation of Zernike coefficients: scaled, translated, and rotated wavefronts with circular and elliptical pupils," J. Opt. Soc. Am. A 24, 569-577 (2007). [CrossRef]
  21. L. Llorente, L. Díaz-Santana, D. Lara-Saucedo, and S. Marcos, "Aberrations of the human eye in visible and near infrared illumination," Optom. Vision Sci. 80, 26-35 (2003). [CrossRef] [PubMed]
  22. E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400- 409 (2005). [CrossRef] [PubMed]
  23. T. O. Salmon, R. W. West, W. Gasser, and T. Kenmore, "Measurement of refractive errors in young myopes using the COAS Shack-Hartmann aberrometer," Optom. Vision Sci. 80, 6-14 (2003). [CrossRef] [PubMed]
  24. D. A. Atchison, "Recent advances in measurement of monochromatic aberrations of human eyes," Clin. Exp. Optom. 88, 5-27 (2005). [CrossRef] [PubMed]
  25. H. Hofer, P. Artal, B. Singer, J. L. Aragon, D. R. Williams, "Dynamics of the eye´s wave aberration," J. Opt. Soc. Am. A 18, 497-506 (2001). [CrossRef]
  26. C. A. Curcio and K. A. Allen, "Topography of ganglion cells in human retina," J. Comp. Neurol. 300, 5-25 (1990). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited