OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 20 — Oct. 1, 2007
  • pp: 12783–12791

Highly efficient fluorescence sensing with hollow core photonic crystal fibers

Stephan Smolka, Michael Barth, and Oliver Benson  »View Author Affiliations

Optics Express, Vol. 15, Issue 20, pp. 12783-12791 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (390 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the potential of microstructured optical fibers (MOFs) for highly sensitive absorption and fluorescence measurements by infiltrating a dye solution in the holey structure. Generally in a MOF only the evanescent part of the electromagnetic field penetrates into the sample material, providing a weak light-matter interaction. We compare such a MOF with a selectively filled hollow core photonic crystal fiber (HCPCF), in which most of the field energy propagates in the sample material. We show that dye concentrations down to 1×10-10 M can be detected in a HCPCF using only nanoliter sample volumes. Our experiments proof that HCPCFs are well suited for demanding sensing applications, outperforming existing fiber tools that rely on evanescent sensing.

© 2007 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(300.1030) Spectroscopy : Absorption
(300.2140) Spectroscopy : Emission

ToC Category:
Photonic Crystal Fibers

Original Manuscript: April 23, 2007
Revised Manuscript: June 20, 2007
Manuscript Accepted: June 20, 2007
Published: September 21, 2007

Virtual Issues
Vol. 2, Iss. 11 Virtual Journal for Biomedical Optics

Stephan Smolka, Michael Barth, and Oliver Benson, "Highly efficient fluorescence sensing with hollow core photonic crystal fibers," Opt. Express 15, 12783-12791 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. D. Nielsen, et al., "Low-loss photonic crystal fibers for transmission systems and their dispersion properties," Opt. Express 12, 1372-1376 (2004). [CrossRef] [PubMed]
  2. V. V. Ravi Kanth Kumar et al., "Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation," Opt. Express 10, 1520-1525 (2002).
  3. J. B. Jensen, et al., "Selective detection of antibodies in microstructured polymer optical fibers," Opt. Express 13, 5883-5889 (2005). [CrossRef] [PubMed]
  4. T. M. Monro, et al., "Sensing with microstructured optical fibres," Meas. Sci. Technol. 12, 854-858 (2001). [CrossRef]
  5. B. J. Eggleton, et al., "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001). [CrossRef] [PubMed]
  6. J. B. Jensen, et al., "Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions," Opt. Lett. 29, 1974-1976 (2004). [CrossRef] [PubMed]
  7. L. Rindorf, et al., "Towards biochips using microstructured optical fiber sensors," Anal. Bioanal. Chem. 385, 1370-1375 (2006). [CrossRef] [PubMed]
  8. C. M. B. Cordeiro, et al., "Microstructured-core optical fibre for evanescent sensing applications," Opt. Express 14, 13056-13066 (2006). [CrossRef] [PubMed]
  9. R. F. Creganet, et al., "Single-Mode Photonic Band Gap Guidance of Light in Air," Science 285, 1537-1539 (1999). [CrossRef]
  10. J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003). [CrossRef] [PubMed]
  11. P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003). [CrossRef] [PubMed]
  12. S. Yiou, et al., "Stimulated Raman scattering in an ethanol core microstructured optical fiber," Opt. Express 13, 4786-4791 (2005). [CrossRef] [PubMed]
  13. K. Nielsen et al., "Selective filling of photonic crystal fibres," J. Opt. A: Pure Appl. Opt. 7, L13-L20 (2005). [CrossRef]
  14. J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004). [CrossRef]
  15. F. Benabid, et al., "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005). [CrossRef] [PubMed]
  16. T. Ritari et al., "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12, 4080-4087 (2004). [CrossRef] [PubMed]
  17. M. Lelek, et al., "High sensitivity autocorrelator based on a fluorescent liquid core fiber," Appl. Phys. Lett. 89, 061117 (2006). [CrossRef]
  18. L. Rindorf, et al., "Photonic crystal fiber long-period gratings for biochemical sensing," Opt. Express 14, 8224- 8231 (2006). [CrossRef] [PubMed]
  19. S. Smolka, et al., "Selectively coated photonic crystal fiber for highly sensitive fluorescence detection," Appl. Phys. Lett. 90, 111101 (2007). [CrossRef]
  20. S. O. Konorov, et al., "Photonic-crystal fiber as a multifunctional optical sensor and sample collector," Opt. Express 13, 3454-3459 (2005). [CrossRef] [PubMed]
  21. C. M. B. Cordeiro, et al., "Lateral access to the holes of photonic crystal fibers - selective filling and sensing applications," Opt. Express 14, 8403-8512 (2006). [CrossRef] [PubMed]
  22. S. J. Myers, et al., "Manipulation of spontaneous emission in a tapered photonic crystal fibre," Opt. Express 14, 12439-12444 (2006). [CrossRef] [PubMed]
  23. L. Xiao, et al., "Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer," Opt. Express 13, 9014-9022 (2005). [CrossRef] [PubMed]
  24. H. Yan, et al., "Hollow core photonic crystal fiber surface-enhanced Raman probe," Appl. Phys. Lett. 89, 204101 (2006). [CrossRef]
  25. Y. Zhang, et al., "Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering," Appl. Phys. Lett. 90, 193504 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited