OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 20 — Oct. 1, 2007
  • pp: 13049–13057

Nano-lithographically fabricated titanium dioxide based visible frequency three dimensional gap photonic crystal

G. Subramania, Y-J. Lee, I. Brener, T.S. Luk, and P.G. Clem  »View Author Affiliations

Optics Express, Vol. 15, Issue 20, pp. 13049-13057 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (344 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photonic crystals (PC) have emerged as important types of structures for light manipulation. Ultimate control of light is possible by creating PCs with a complete three dimensional (3D) gap [1, 2]. This has proven to be a considerable challenge in the visible and ultraviolet frequencies mainly due to complications in integrating transparent, high refractive index (n) materials with fabrication techniques to create ~ 100nm features with long range translational order. In this letter, we demonstrate a nano-lithography approach based on a multilevel electron beam direct write and physical vapor deposition, to fabricate four-layer titania woodpile PCs that potentially exhibit complete 3D gap at visible wavelengths. We achieved a short wavelength bandedge of 525nm with a 300nm lattice constant PC. Due to the nanoscale precision and capability for defect control, the nanolithography approach represents an important step toward novel visible photonic devices for lighting, lasers, sensing and biophotonics.

© 2007 Optical Society of America

OCIS Codes
(050.7330) Diffraction and gratings : Volume gratings
(160.4670) Materials : Optical materials
(220.3740) Optical design and fabrication : Lithography
(220.4241) Optical design and fabrication : Nanostructure fabrication
(050.6875) Diffraction and gratings : Three-dimensional fabrication

ToC Category:
Photonic Crystals

Original Manuscript: July 27, 2007
Revised Manuscript: September 20, 2007
Manuscript Accepted: September 21, 2007
Published: September 25, 2007

Virtual Issues
Vol. 2, Iss. 11 Virtual Journal for Biomedical Optics

Ganapathi Subramania, Yun-Ju Lee, Igal Brener, Ting-Shan Luk, and Paul G. Clem, "Nano-lithographically fabricated titanium dioxide based visible frequency three dimensional gap photonic crystal," Opt. Express 15, 13049-13057 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablanovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. P. Yao, G. Schneider, D. Prather, E. Wetzel and D. O’Brien, "Fabrication of three-dimensional photonic crystals with multilayer photolithogrpahy," Opt. Express 13, 2370-2376 (2005). [CrossRef]
  4. J. G. Fleming and S. Y. Lin, "Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 µm," Opt. Lett. 24, 49-51 (1999). [CrossRef]
  5. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three dimensional photonic bandgap crystals at nearinfrared wavelengths," Science 289, 604-607 (2000). [CrossRef] [PubMed]
  6. M. Deubel, G. V. Freyman, M. Wegener, S. Pereirra, K. Busch and C. M. Soukoulis, "Direct laser writing of three dimensional photonic crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004). [CrossRef] [PubMed]
  7. Y. Lin, P. R. Herman, and K. Darmawikarta, "Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals," Appl. Phys. Lett. 86, 071117 (2005). [CrossRef]
  8. A. F. Koenderink, P. M. Johnson, J. F. G. Lopez, and W. L. Vos, "Three-dimensional photonic crystals as cage for light," C. R. Phys. 3, 67-77 (2002). [CrossRef]
  9. C. Lopez "Three dimensional photonic band gap materials: semiconductors for light," J. Opt. A: Pure Appl. Opt. 8, R1-R14 (2006). [CrossRef]
  10. E. D. Palik, ed., Handbook of optical constants of solids (Academic Press, San Diego, CA, 1985).
  11. K. Awazu, X. Wang, M. Fujimaki, R. Kuriyama, A. Sai and Y. Ohki, "Fabrication of two- and three-dimensional photonic crystals pf titania with submicrometer resolution by deep X-ray lithography," J. Vac. Sci. Technol. B 23, 934-939 (2005).
  12. J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. Denning, A. J. Turberfield, and C. J. Summers, "Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition," Adv. Mater. 18, 1561-1565 (2006). [CrossRef]
  13. P. V. Braun and P. Wiltzius, "Electrochemically grown photonic crystals," Nature 402, 603-604 (1999). [CrossRef]
  14. J. E. G. J. Wijnhoven and W. L. Vos, "Preparation of photonic crystals made of air spheres in titania," Science 281, 802-804 (1998). [CrossRef]
  15. B. T. Holland, C. F. Blanford, and A. Stein, "Synthesis of macroporous minerals with highly ordered three dimensional arrays of spheroidal voids," Science 281, 538-540 (1998). [CrossRef] [PubMed]
  16. G. Subramania, K. Constant, R. Biswas, M. M. Sigalas and K. M. Ho, "Optical photonic crystals fabricated from colloidal systems," Appl. Phys. Lett. 74, 3933-3935 (1999). [CrossRef]
  17. R. Biswas, M. M. Sigalas, G. Subramania and K. M. Ho, "Photonic band gaps in colloidal systems," Phys. Rev. B. 57, 3701-3705 (1998). [CrossRef]
  18. B. Juarez, M. Ibistate, J. M. Palacios and C. Lopez, "High-energy photonic bandgap in Sb2S3 inverse opals by sulfidation processing," Adv. Mater. 15, 319-322 (2003). [CrossRef]
  19. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, M. Sigalas, "Photonic band gap in three dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994). [CrossRef]
  20. S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda," Control of light emission by 3D photonic crystals," Science 305, 227-229 (2004). [CrossRef] [PubMed]
  21. G. Subramania and S. Y. Lin. "Fabrication of three-dimensional photonic crystal with alignment based on electron beam lithography," Appl. Phys. Lett. 74, 5037-5039 (2004). [CrossRef]
  22. M. Qi, E. Lidorikis, P.T. Rakich, S.G. Johnson, J.D. Joannopoulos, E.P. Ippen and H. Smith, "A three dimensional optical photonic crystal with designed point defects," Nature 429, 538-542 (2004). [CrossRef] [PubMed]
  23. A. S. P. Chang, Y. S. Kim, M. Chen, Z. P. Yang, J. A. Bur, S. Y. Lin, K. M. Ho, "Visible three-dimensional metallic photonic crystals with non-localized propagation modes beyond waveguide cutoff," Opt. Express 15, 8428-8437 (2007). [CrossRef]
  24. A. Fiegel and B. Sfez, "Overlapped woodpile photonic crystals," Appl. Opt. 43, 793-795 (2004).. [CrossRef]
  25. R. Rabady and I. Avrutsky, "Titania, silicon dioxide, and tantalum pentaoxide waveguides and optical resonant filters prepared with radio-frequency magnetron sputtering and annealing," Appl. Opt. 44, 378-383 (2005). [CrossRef] [PubMed]
  26. M. M. Sigalas, C. M. Soukoulis, C. T. Chan, R. Biswas, and K. M. Ho, " Effect of disorder on photonic band gaps," Phys. Rev. B 59, 12767-12770 (1999). [CrossRef]
  27. G. Subramania, "Planarization of three-dimensional photonic crystals and other multi-level nanoscale structures," Nanotechnology 18, 035303 (2007). [CrossRef] [PubMed]
  28. Y. A. Vlasov, X-Z. Bo, J. C. Sturm, and D. J. Norris, "Single domain spectroscopy of self-assembled photonic crystals," Appl. Phys. Lett. 76, 1627-1629 (2001). [CrossRef]
  29. K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic band gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990). [CrossRef] [PubMed]
  30. T. Suzuki and P. K. L. Yu, "Emission power of an electrical dipole in the photonic band structure of the fcc lattice," J. Opt. Soc. Am. B 12, 570-581 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited