OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 20 — Oct. 1, 2007
  • pp: 13149–13154

On the relationship between Bloch modes and phase-related refractive index of photonic crystals

Guilin Sun and Andrew G. Kirk  »View Author Affiliations


Optics Express, Vol. 15, Issue 20, pp. 13149-13154 (2007)
http://dx.doi.org/10.1364/OE.15.013149


View Full Text Article

Enhanced HTML    Acrobat PDF (224 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It has previously been shown that the phase-related refractive index is positive in photonic crystals that display negative refraction at higher bands. We hypothesize that the phase velocity is governed by a wave that can be related to the dominant Bloch mode. This dominant wave can be identified from an approximate solution of Maxwell Equations using a homogeneously averaged dielectric constant and the dominant wavevector is related to the fundamental wavevector and the reciprocal lattice vectors. We validate this hypothesis by numerical Fourier decomposition of the field in the entire simulation domain. It confirms that for negative refraction at higher bands, the phase-related refractive index is indeed positive and differs significantly from the negative value of effective refractive index calculated from the band structure.

© 2007 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(350.3950) Other areas of optics : Micro-optics
(350.5500) Other areas of optics : Propagation

ToC Category:
Photonic Crystals

History
Original Manuscript: August 1, 2007
Revised Manuscript: September 15, 2007
Manuscript Accepted: September 18, 2007
Published: September 26, 2007

Citation
Guilin Sun and Andrew G. Kirk, "On the relationship between Bloch modes and phase-related refractive index of photonic crystals," Opt. Express 15, 13149-13154 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-20-13149


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev., B, 58, 10096-10099, (1998). [CrossRef]
  2. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Appl. Phys. Lett.,  74, 1212-1214, (1999) [CrossRef]
  3. J.P. Dowling and C.M. Bowden, "Anomalous index of refraction in photonic bandgap materials," J. Mod. Opt.,  41, 345-351, (1994). [CrossRef]
  4. B. Gralak, S. Enoch, and G. Tayeb, "Anomalous refractive properties of photonic crystals, " J. Opt. Soc. Am, A,  17, 1012-1020, (2000). [CrossRef]
  5. M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev., B,  62, 10696-10705, (2000). [CrossRef]
  6. C. Luo, S.G. Johnson, J.D. Joannopoulos, and J.B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev., B 65, 201104, (2002). [CrossRef]
  7. V. Veselago, "The electrodynamics of substances with simultaneously negative values of and ," Soviet Phys.Uspekhi, 10, 509-514, (1968). (in Russian,1964) [CrossRef]
  8. J.B. Pentry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett.,  85, 3966-3969, (2000). [CrossRef]
  9. D.R. Smith, W.J. Padina, D.C. Vier, S.C. Nemat-Nasser, and S. Schultz, "A composite medium with simultaneously negative permeability and permittivity," Phys.Rev.Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  10. M. Anioniades and G.V. Eleftheriades, "Compact linear lead/lag metamaterial phase shifters for broadband applications, " IEEE Antennas & Wireless Propag. Lett.,  2, 103 - 106, (2003) [CrossRef]
  11. A. Martínez, H. Míguez, J. Sánchez-Dehesa, and J. Martí, "Analysis of wave propagation in a two-dimensional photonic crystal with negative index of refraction: plane wave decomposition of the Bloch modes," Opt. Express 13, 4160-4174 (2005). [CrossRef] [PubMed]
  12. B. Lombardet, L. A. Dunbar, R. Ferrini, and R. Houdré, "Fourier analysis of Bloch wave propagation in photonic crystals," J. Opt. Soc. Am. B 22, 1179-1190 (2005) [CrossRef]
  13. M.  Born, E.  Wolf, Principles of Optics, Pergamon, Oxford, 1989.
  14. P. St.J. Russel, "Interference of integrated Floquet-Bloch waves," Phys. Rev. A,  33, 3232-3242, (1986) [CrossRef]
  15. K. Sakoda, "Optical properties of photonic crystals,"Springer-Verlag, New York,2nd ed., 2005
  16. G. Sun, A.S. Jugessur, and A.G. Kirk, "Imaging properties of dielectric photonic crystal slabs for large object distances, " Opt. Express,  14, 6755-6765 (2006). [CrossRef] [PubMed]
  17. G. Sun and A. G. Kirk, "Pseudo-interference and its application in determining averaged phase refractive index of photonic crystals," IEEE LEOS 2006 Annual Meeting, 29 October - 2 November 2006, Montreal.
  18. A. Martínez and J. Martí, "Positive phase evolution of waves propagating along a photonic crystal with negative index of refraction," Opt. Express 14, 9805-9814 (2006) [CrossRef] [PubMed]
  19. G. Sun, A. Bakhtazad, A. Jugessur, and A. Kirk, "Open cavities using photonic crystals with negative refraction," Proc. SPIE, 6343, ed. P. Mathieu, (2006), doi:10.1117/12.708026
  20. A. Yariv and P. Yeh, Optical waves in crystals: propagation and control of laser radiation, Wiley, New York, 2003.
  21. S. Foteinopoulou and C.M. Soukoulis, "Electromagnetic wave propagation in two-dimensional photonic crystals: a study of anomalous refractive effects," Phys. Rev. B 72, 165112 (2005). [CrossRef]
  22. G. Sun and A. G. Kirk, "Lattice resonance inside photonic crystal slab with negative refraction," OSA Frontiers in Optics 2006/Laser Science XXII conferences, October 8-12, 2006, Rochester, New York.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited