OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 20 — Oct. 1, 2007
  • pp: 13227–13235

Near-field imaging of quantum cascade laser transverse modes

Nanfang Yu, Laurent Diehl, Ertugrul Cubukcu, Christian Pflügl, David Bour, Scott Corzine, Jintian Zhu, Gloria Höfler, Kenneth B. Crozier, and Federico Capasso  »View Author Affiliations

Optics Express, Vol. 15, Issue 20, pp. 13227-13235 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (479 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report near field imaging of the transverse lasing modes of quantum cascade lasers. A mid-infrared apertureless near-field scanning optical microscope was used to characterize the modes on the laser facet. A very stable mode pattern corresponding to a TM00 mode was observed as function of increasing driving current for a narrow active region quantum cascade laser. Higher order modes were observed for devices with a larger active region width-to-wavelength ratio operated in pulsed mode close to threshold. A theoretical model is proposed to explain why specific transverse modes are preferred close to threshold. The model is in good agreement with the experimental results.

© 2007 Optical Society of America

OCIS Codes
(030.4070) Coherence and statistical optics : Modes
(180.4243) Microscopy : Near-field microscopy
(250.5403) Optoelectronics : Plasmonics
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 9, 2007
Revised Manuscript: September 21, 2007
Manuscript Accepted: September 21, 2007
Published: September 27, 2007

Nanfang Yu, Laurent Diehl, Ertugrul Cubukcu, Christian Pflügl, David Bour, Scott Corzine, Jintian Zhu, Gloria Höfler, Kenneth B. Crozier, and Federico Capasso, "Near-field imaging of quantum cascade laser transverse modes," Opt. Express 15, 13227-13235 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. E. Siegman, "Defining, measuring, and optimizing laser beam quality," Proc. SPIE. 1868, 2-12 (1993).
  2. E. Betzig and J. K. Trautmann, "Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit," Science 257, 189-195 (1992). [CrossRef] [PubMed]
  3. S. K. Buratto, J. W. P. Hsu, J. K. Trautman, E. Betzig, R. B. Bylsma, C. C. Bahr, and M. J. Cardillo, "Imaging InGaAsP quantum-well lasers using near-field scanning optical microscopy," J. Appl. Phys. 76, 7720-7725 (1994). [CrossRef]
  4. U. Ben-Ami, N. Tessler, N. Ben-Ami, R. Nagar, G. Fish, K. Lieberman, G. Eisenstein, A. Lewis, J. M. Nielsen, and A. Møeller-Larsen, "Near-infrared contact mode collection near-field optical and normal force microscopy of modulated multiple quantum well lasers," Appl. Phys. Lett. 68, 2337-2339 (1996). [CrossRef]
  5. F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994). [CrossRef]
  6. A. Lahrech, R. Bachelot, P. Gleyzes, and A. C. Boccara, "Infrared-reflection-mode near-field microscopy using an apertureless probe with a resolution of λ/600," Opt. Lett. 21, 1315-1317 (1996). [CrossRef] [PubMed]
  7. G. Wurtz, R. Bachelot, and P. Royer, "Imaging a GaAlAs laser diode in operation using apertureless scanning near-field optical microscopy," Eur. Phys. J.: Appl. Phys. 5, 269-275 (1999). [CrossRef]
  8. V. Moreau, M. Bahriz, R. Colombelli, P. Lemoine, Y. D. Wilde, L. R. Wilson, and A. B. Krysa, "Direct imaging of a laser mode via midinfrared near-field microscopy," Appl. Phys. Lett. 90, 201114 (2007). [CrossRef]
  9. B. Knoll and F. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun. 182, 321-328 (2000). [CrossRef]
  10. T. Taubner, R. Hillenbrand, and F. Keilmann, "Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy," Appl. Phys. Lett. 85, 5064-5066 (2004). [CrossRef]
  11. M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, "Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution," Nano Lett. 6, 1307-1310 (2006). [CrossRef] [PubMed]
  12. L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Lonèar, M. Troccoli, and F. Capasso, "High-temperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vapor-phase epitaxy," Appl. Phys. Lett. 89, 081101 (2006). [CrossRef]
  13. M. Troccoli, S. Corzine, D. Bour, J. Zhu, O. Assayag, L. Diehl, B. G. Lee, G. Höfler, and F. Capasso, "Room temperature continuous-wave operation of quantum-cascade lasers grown by metal organic vapour phase epitaxy," Electron. Lett. 41, 1059-1060 (2005). [CrossRef]
  14. The complex refractive index of the active region is calculated by taking the weighted average of the complex refractive indexes of the two constituent materials (AlInAs and InGaAs). This is a good approximation because the wavelength in the laser material is significantly larger than the thickness of each individual material layer (typically 1~4 nm).
  15. J. Guthrie, G. L. Tan, M. Ohkubo, T. Fukushima, Y. Ikegami, T. Ijichi, M. Irikawa, R. S. Mand, and J. M. Xu, "Beam instability in 980-nm power lasers: experiment and analysis," IEEE Photon. Technol. Lett. 6, 1409-1411 (1994). [CrossRef]
  16. M. F. C. Schemmann, C. J. van der Poel, B. A. H. van Bakel, H. P. M. M. Ambrosius, A. Valster, J. A. M. van den Heijkant, and G. A. Acket, "Kink power in weakly index guided semiconductor lasers," Appl. Phys. Lett. 66, 920-922 (1995). [CrossRef]
  17. G. L. Tan, R. S. Mand, and J. M. Xu, "Self-consistent modeling of beam instabilities in 980-nm fiber pump lasers," IEEE J. Quantum Electron. 33, 1384-1395 (1997). [CrossRef]
  18. W. W. Bewley, J. R. Lindle, C. S. Kim, I. Vurgaftman, J. R. Meyer, A. J. Evans, J. S. Yu, S. Slivken, and M. Razeghi, "Beam steering in high-power CW quantum-cascade lasers," IEEE J. Quantum Electron. 41, 833-841 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited