OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 20 — Oct. 1, 2007
  • pp: 13421–13433

Analysis on fluorescence intensity reverse photonic phenomenon between red and green fluorescence of oxyfluoride nanophase vitroceramics

Xiaobo Chen, Zengfu Song, Lili Hu, Junjie Zhang, Ce Wang, Lei Wen, and Song Li  »View Author Affiliations


Optics Express, Vol. 15, Issue 20, pp. 13421-13433 (2007)
http://dx.doi.org/10.1364/OE.15.013421


View Full Text Article

Enhanced HTML    Acrobat PDF (298 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An interesting fluorescence intensity reverse photonic phenomenon between red and green fluorescence is investigated. The dynamic range ∑ of intensity reverse between red and green fluorescence of Er(0.5)Yb(3):FOV oxyfluoride nanophase vitroceramics, when excited by 378.5nm and 522.5nm light respectively, is about 4.32×102. It is calculated that the phonon-assistant energy transfer rate of the electric multi-dipole interaction of {4G11/2(Er3+)→4F9/2(Er3+), 2F7/2(Yb3+)→2F5/2(Yb3+)} energy transfer of Er(0.5)Yb(3):FOV is around 1.380×108s-1, which is much larger than the relative multiphonon nonradiative relaxation rates 3.20×105s-1. That energy transfer rate for general material with same rare earth ion’s concentration is about 1.194×105s-1. These are the reason to emerge the unusual intensity reverse phenomenon in Er(0.5)Yb(3):FOV.

© 2007 Optical Society of America

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(250.5230) Optoelectronics : Photoluminescence
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(300.6420) Spectroscopy : Spectroscopy, nonlinear
(160.4236) Materials : Nanomaterials

ToC Category:
Spectroscopy

History
Original Manuscript: August 14, 2007
Revised Manuscript: September 17, 2007
Manuscript Accepted: September 18, 2007
Published: September 28, 2007

Citation
Xiaobo Chen, Zengfu Song, Junjie Zhang, Lili Hu, Lei Wen, Ce Wang, and Song Li, "Analysis on fluorescence intensity reverse photonic phenomenon between red and green fluorescence of oxyfluoride nanophase vitroceramics," Opt. Express 15, 13421-13433 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-20-13421


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. P. Feynman, "There's plenty of room at the bottom," Engineering and Science 23, 22-23 (1960).
  2. P. N. Prasad, Nanophotonics, (N. J. Hoboken, Wiley-Interscience, 2004). [CrossRef]
  3. M. Grundmann, Nano-optoelectronics: concepts, physics, and advices, (Berlin: New York, Springer, 2002).
  4. H. Masuhara, Nanophotonics: Integrating Photochemistry, Optics and Nano/Bio Materials Studies, (Elsevier, 2004).
  5. E. L. Wolf, Nanophysics and nanotechnology: an introduction to modern concepts in nanoscience, (Weinheim :Wiley-VCH Verlag, 2004).
  6. Y. Z. Shen, C. S. Friend, Y. Jiang, D. Jakubczyk, J. Swiatkiewicz, and P. N. Prasad, "Nanophotonics: Interactions, materials, and applications," J. Phys. Chem. B 104, 7577-7587 (2000). [CrossRef]
  7. B. K. Zhou, Y. Z. Gao, Z. R. Chen, Laser Principle, (Beijing: National Press, 2004).
  8. A. Lin, D. H. Son, I. H. Ahn, G. H. Song, and W. T. Han, "Visible to infrared photoluminescence from gold nanoparticles embedded in germano-silicate glass fiber," Opt. Express 15, 6374-6379 (2007). [CrossRef] [PubMed]
  9. Q. M. Wang, Photonics Technology, (Beijing,Tsinghua University Press, 2002).
  10. U. H. Kynast, M. M. Lezhnina, and H. Katker, "Potential of nano-sized rare earth fluorides in optical applications," Solid State Phenomena 106, 93-102 (2005). [CrossRef]
  11. Y. H. Wang, and J. Ohwaki, "New transparent vitroceramics codoped with Er3 + and Yb3 + for efficient frequency upconversion," Appl. Phys. Lett. 63, 3268-3270 (1993). [CrossRef]
  12. X. B. Chen, Y. L. Liu, and N. Sawanobori, "Raman and x-radiate diffraction study about material property of oxyfluoride vitroceramics and glass," Proc. SPIE 4221, 83-87 (2000). [CrossRef]
  13. E. De la Rosa, P. Salas, L. A. Diaz-Torres, A. Martinez, and C. Angeles, "Strong visible cooperative up-conversion emission in ZrO2 : Yb3+ nanocrystals," J. Nanosci. Nanotechnol. 5, 1480-1486 (2005). [CrossRef] [PubMed]
  14. S. Hinjosa, M. A. Meneses-Nava, O. Barbosa-Garcia, L. A. Diaz-Torres, M. A. Santoyo, and J. F. Mosino, "Energy back transfer, migration and energy transfer (Yb-to-Er and Er-to-Yb) processes in Yb,Er : YAG, " J. Lumin. 102, 694-698(2003). [CrossRef]
  15. J. Frenkel, "On the Transformation of light into Heat in Solids," Phys. Rev. 37, 17-44(1931). [CrossRef]
  16. L. A. Riseberg, W. B. Gandrud, and H. W. Moos, "Multiphonon Relaxation of Near-Infrared Excited States of LaCl3:Dy3+," Phys. Rev. 159, 262-266 (1967). [CrossRef]
  17. E. Cohen, L. A. Riseberg, and H. W. Moos, "Effective Density of Phonon States for NdCl3 from Vibronic Spectra and Applications to Ion-Lattice Interactions," Phys. Rev. 175,521-525 (1968). [CrossRef]
  18. T. Miyakawa and D. L. Dexter, "Phonon Sidebands, Multiphonon Relaxation of Excited States, and Phonon-Assisted Energy Transfer between Ions in Solids," Phys. Rev. B 1, 2961-2969 (1970). [CrossRef]
  19. L. A. Riseberg, and M. J. Weber, "Relaxation phenomena in rare earth luminescence," in Progress in Optics, (Amsterdam, North Holland Publishing Co. 1975) Vol. 14.
  20. R. Reisfeld, Lasers and excited states of rare-earth, (New York : Springer-Verlag, Berlin Heidelberg, 1977). [CrossRef]
  21. T. Miyakawa and D. L. Dexter, "Cooperative and Stepwise Excitation of Luminescence: Trivalent Rare-Earth Ions in Yb3+-Sensitized Crystals," Phys. Rev. B 1, 70-80 (1970). [CrossRef]
  22. D. L. Dexter, "A Theory of Sensitized Luminescence in Solids," J. Chem. Phys. 21, 836-850 (1953). [CrossRef]
  23. M. Inokuti and F. Hirayama, "Influence of Energy Transfer by the Exchange Mechanism on Donor Luminescence," J. Chem. Phys. 43,1978-1989 (1965). [CrossRef]
  24. S. L. Zhao and Z. Xu, "Donor concentration dependence of upconversion luminescence in YLiF4:Er3+Yb3+, " Spectrosc. Spect. Anal. 25, 1933-1937 (2005).
  25. S. Y. Zhang, Theory of Rare Earth spectroscopy, (Chang Chun: Jilin Science Press, 1991).
  26. B. R. Judd, "Optical absorption intensities of rare-earth ions," Phys. Rev. 127,750-761 (1962). [CrossRef]
  27. G. S. Ofelt, "Intensities of crystal spectra of rare-earth ions," J. Chem. Phys. 37,511-520 (1962). [CrossRef]
  28. M. Beggiora, I. M. Reaney, and M. S. Islam, "Structure of the nanocrystals in oxyfluoride glass ceramics," Appl. Phys. Lett. 83, 467-469 (2003). [CrossRef]
  29. M. Tsuda, K. Soga, H. Inoue, and A. Makishima, "Comparison between the calculated and measured energy transfer rates of the 4S3/2 state in Er3+-doped fluorozirconate glasses," J. Appl. Phys. 88, 1900-1906 (2000). [CrossRef]
  30. F. Bao, Y. S. Wang, and Z. J. Hu, "Influence of Er3+ doping on microstructure of oxyfluoride glass-ceramics," Mater. Res. Bull. 40, 1645-1653 (2005). [CrossRef]
  31. Q. Song, X. Y. Wang, H. Chen, J. S. Gao, T. T. Wang, X. M. Zheng, C. R. Li, and C. L. Song, "Photoluminescence enhancement in Yb3+: Er3+ co-doped eutectic Al2O3 : SiO2 thin films by 980nm excitation," Opt. Express 15, 3948-3954 (2007). [CrossRef] [PubMed]
  32. J. R. DiMaio, B. Kokuoz, and J. Ballato, "White light emissions through down-conversion of rare-earth doped LaF3 nanoparticles," Opt. Express 14, 11412-11417 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited