OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 21 — Oct. 17, 2007
  • pp: 13607–13612

Similariton pulse instability in mode-locked Yb-doped fiber laser in the vicinity of zero cavity dispersion

Yury Logvin and Hanan Anis  »View Author Affiliations

Optics Express, Vol. 15, Issue 21, pp. 13607-13612 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (143 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Stability of the similariton mode-locked regime in Yb-doped fiber laser in the vicinity of zero cavity dispersion is studied by means of numerical simulations. It is shown that similariton pulses which initially arise from laser noise collapse into a continuous wave state. The mode-locked pulses are found to be stable after a certain cavity dispersion threshold is exceeded. From analysis of the instability development, we conclude that instability has parametric nature. We compare our results with stability analysis based on the Ginzburg-Landau approach. Analogies with instabilities found in the long-haul fiber communication systems are also discussed.

© 2007 Optical Society of America

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 28, 2007
Revised Manuscript: September 29, 2007
Manuscript Accepted: September 30, 2007
Published: October 2, 2007

Yury Logvin and Hanan Anis, "Similariton pulse instability in mode-locked Yb-doped fiber laser in the vicinity of zero cavity dispersion," Opt. Express 15, 13607-13612 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 3902-3905 (2004). [CrossRef]
  2. V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J.M. Dudley, "Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers," J. Opt. Soc. Am. B 19, 461-469 (2002). [CrossRef]
  3. C. Nielsen, B. Ortaç, T. Schreiber, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, "Self-starting self-similar all-polarization maintaining Yb-doped fiber laser," Opt. Express 13, 9346-9351 (2005) [CrossRef] [PubMed]
  4. B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel, and J. Limpert, "Self-similar low-noise femtosecond ytterbium-doped double-clad fiber laser," Appl. Phys. B 85, 63-67 (2006). [CrossRef]
  5. A. Ruehl, O. Prochnow, D. Wandt, D. Kracht, B. Burgoyne, N. Godbout, and S. Lacroix, "Dynamics of parabolic pulses in an ultrafast fiber laser," Opt. Lett. 31, 2734-2736 (2006). [CrossRef] [PubMed]
  6. C. Antonelli, J. Chen, and F. X. Kartner, "Intracavity pulse dynamics and stability for passively mode-locked lasers," Opt. Express 15, 5919-5924 (2007). [CrossRef] [PubMed]
  7. T. Schreiber, B. Ortaç, J. Limpert, and A. Tünnermann, "On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations," Opt. Express 15, 8252-8262 (2007). [CrossRef] [PubMed]
  8. P. -A. Bélanger, "Stable operation of mode-locked fiber lasers: similariton regime," Opt. Express 15, 11033-11041 (2007). [CrossRef] [PubMed]
  9. O. E. Martinez, R. L. Fork, and J. P. Gordon, "Theory of passively mode-locked lasers for the case of a nonlinear complex-propagation coefficient," J. Opt. Soc. Am. B 2, 753-760 (1985). [CrossRef]
  10. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, "Structures for additive pulse mode locking," J. Opt. Soc. Am. B 8, 2068-2076 (1991). [CrossRef]
  11. N. N. Akhmediev and A. Ankiewicz, Solitons: nonlinear pulses and beams (Chapman & Hall, London, 1997).
  12. A. Komarov, H. Leblond, and F. Sanchez, "Quintic complex Ginzburg-Landau model for ring fiber lasers," Phys. Rev. E 72, 025604-025607 (2005). [CrossRef]
  13. E. Podivilov and V. L. Kalashnikov, "Heavily-chirped solitary pulses in the normal dispersion region: New solutions of the cubic-quintic complex Ginzburg-Landau equation," JETP Lett. 82, 524-528 (2005). [CrossRef]
  14. V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, "Chirped-pulse oscillators: theory and experiment," Appl. Phys. B 83, 503-510 (2006). [CrossRef]
  15. G. P. Agrawal, Nonlinear Fiber Optcs, 2nd ed., (Academic, San Diego, Calif., 1995).
  16. F. T. Arecchi and R. G. Harrison, Instabilities and Chaos in Quantum Optics (Springer, Berlin, 1987).
  17. L. Zhao, D. Tang, F. Lin, and B. Zhao, "Observation of period-doubling bifurcations in a femtosecond fiber soliton laser with dispersion management cavity," Opt. Express 12, 4573-4578 (2004). [CrossRef] [PubMed]
  18. F. Matera, A. Mecozzi, M. Romagnoli, and M. Settembre, "Sideband instability induced by periodic power variation in long-distance fiber links," Opt. Lett. 18, 1499-1501 (1993). [CrossRef] [PubMed]
  19. P. Serena, A. Bononi, and A. Orlandini, "Fundamental laws of parametric gain in periodic dispersion-managed optical links," J. Opt. Soc. Am. B 24, 773-787 (2007). [CrossRef]
  20. Y. Logvin, V. P. Kalosha, and H. Anis, "Third-order dispersion impact on mode-locking regimes of Yb-doped fiber laser with photonic bandgap fiber for dispersion compensation," Opt. Express 15, 985 (2007). [CrossRef] [PubMed]
  21. S. M. J.  Kelly, "Characteristic sideband instability of periodically amplified average soliton," Electron. Lett.  28, 806-807 (1992). [CrossRef]
  22. D. J. Jones, Y. Chen, H. A. Haus, and E. P. Ippen, "Resonant sideband generation in stretched-pulse fiber lasers," Opt. Lett. 23, 1535-1537 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited