OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 21 — Oct. 17, 2007
  • pp: 13715–13730

Quantitative measurement of muscle oxygen saturation without influence from skin and fat using continuous-wave near infrared spectroscopy

Ye Yang, Olusola Soyemi, Peter J. Scott, Michelle R. Landry, Stuart M. Lee, Leah Stroud, and Babs R. Soller  »View Author Affiliations


Optics Express, Vol. 15, Issue 21, pp. 13715-13730 (2007)
http://dx.doi.org/10.1364/OE.15.013715


View Full Text Article

Acrobat PDF (754 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method to non-invasively and quantitatively measure muscle oxygen saturation (SmO2) using broadband continuous-wave diffuse reflectance near infrared (NIR) spectroscopy is presented. The method obtained SmO2 by first correcting NIR spectra for absorption and scattering of skin pigment and fat, then fitting to a Taylor expansion attenuation model. A non-linear least squares optimization algorithm with set boundary constraints on the fitting parameters was used to fit the model to the acquired spectra. A data preprocessing/optimization scheme for accurately determining the initial values needed for the optimization was also employed. The method was evaluated on simulated muscle spectra with 4 different scattering properties, as well as on in vivo forearm spectra from 5 healthy volunteer subjects during arterial occlusion. Measurement repeatability was assessed on 24 healthy volunteers with 5 repeated measurements, each separated by at least 48 hours.

© 2007 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: August 8, 2007
Revised Manuscript: September 25, 2007
Manuscript Accepted: October 1, 2007
Published: October 4, 2007

Virtual Issues
Vol. 2, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Ye Yang, Olusola Soyemi, Peter J. Scott, Michelle R. Landry, Stuart M. Lee, Leah Stroud, and Babs R. Soller, "Quantitative measurement of muscle oxygen saturation without influence from skin and fat using continuous-wave near infrared spectroscopy," Opt. Express 15, 13715-13730 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-21-13715


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. F. F. Jobsis, "Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters," Science 198, 1264-1267 (1977). [CrossRef]
  2. M. Ferrari, L. Mottola, and V. Quaresima, "Principal, techniques and limitations of near infrared spectroscopy," Can. J. Appl. Physiol. 29, 463-87 (2004).
  3. D. K. Harrison, "Optical measurement of tissue oxygen saturation," Int. J. Low. Extrem. Wounds. 1, 191-201 (2002).
  4. R. Boushel, H. Langberg, J. Olesen, J. Gonzales-Alonzo, J. Bülow and M. Kjær, "Monitoring tissue oxygen availability with near infrared (NIRS) in health and disease," Scand. J. Med. Sci. Sports 11, 213-222 (2001). [CrossRef]
  5. R. Boushel and C. A. Piantadosi, "Near-infrared spectroscopy for monitoring muscle oxygenation," Acta Physiol. Scand. 168, 615-622 (2000). [CrossRef]
  6. M. Ferrari, T. Binzoni, and V. Quaresima, "Oxidative metabolism in muscle," Phil. Trans. R. Soc. Lond. B 352, 677-683 (1997). [CrossRef]
  7. V. Quaresima, R. Lepanto, and M. Ferrari, "The use of near infrared spectroscopy in sports medicine," J. Sports Med. Phys. Fitness 43, 1-13 (2003).
  8. M. I. R. Pereira, P. S. C. Gomes, and Y. N. Bhambhani, "A brief review of the use of near infrared spectroscopy with particular interest in resistance exercise," Sports Med. 37, 615-624 (2007). [CrossRef]
  9. D. T. Delpy and M. Cope, "Quantification in tissue near-infrared spectroscopy," Phil. Trans. R. Soc. Lond. B 352, 649-659 (1997).
  10. P. Rolfe, "In vivo near-infrared spectroscopy," Annu. Rev. Biomed. Eng. 2, 715-754 (2000). [CrossRef]
  11. G. Strangman, D. A. Boas, and J. P. Sutton, "Non-invasive neuroimaging using near-infrared light," Biol. Psychiatry 52, 679-693 (2002). [CrossRef]
  12. K. R. Ward, R. R. Ivatury, R. W. Barbee, J. Terner, R. Pittman, I. P. T. Filho, and B. Spiess, "Near infrared spectroscopy for evaluation of the trauma patient: a technology review," Resuscitation 68, 28-44 (2006).
  13. D. T. Delpy, M. Cope, P van der Zee, S. Arridge, S Wray and J. Wyatt, "Estimation of optical path length through tissue from direct time of flight measurements," Phys. Med. Biol. 33, 1433-1442 (1988). [CrossRef]
  14. S. J. Matcher, M. Cope, and D. T. Delpy, "Use of water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy," Phys. Med. Biol. 38, 177-196 (1993).
  15. J. Shao, L. Lin, M. Niwayama, N. Kudo, and K. Yamamoto, "Theoretical and experimental studies on linear and nonlinear algorithms for the measurement of muscle oxygenation using continuous-wave near-infrared spectroscopy," Opt. Eng. 40, 2293-2301 (2001). [CrossRef]
  16. S. J. Matcher and C. E. Cooper, "Absolute quantification of deoxyhaemoglobin concentration in tissue near infrared spectroscopy," Phys. Med. Biol. 39, 1295-1312 (1994). [CrossRef]
  17. S. Suzuki, S. Takasaki, T. Ozaki and Y. Kobayashi, "A tissue oxygenation monitor using NIR spatially resolved spectroscopy," Proc. SPIE 3597, 582-592 (1999).
  18. S. J. Matcher, P. Kirkpatrick, K. Nahid, M. Cope and D. T. Delpy, "Absolute quantification methods in tissue near infrared spectroscopy," Proc. SPIE 2389, 486-495 (1995).
  19. S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefied, D. Maulik and M. R. Stankovic, "Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and requency-domain spectroscopy," Phys. Med. Biol. 44, 1543-1563 (1999). [CrossRef]
  20. H. Liu, D. A. Boas, Y. Zhang, A. G. Yodh, and B. Chance, "Determination of optical properties and blood oxygenation in tissue using continuous NIR light," Phys. Med. Biol. 40, 1983-1993 (1995). [CrossRef]
  21. S. Zhang, B. R. Soller, and R. H. Micheels, "Partial least-squares modeling of near-infrared reflectance data for noninvasive in vivo determination of deep-tissue pH," Appl. Spectrosc. 52, 400-406 (1998). [CrossRef]
  22. S. Zhang, B. R. Soller, S. Kaur, K. Perras, and S. Vander, "Investigation of noninvasive in vivo blood hematocrit measurement using NIR reflectance spectroscopy and partial least-squares regression," Appl. Spectrosc. 54, 294-299 (2000). [CrossRef]
  23. H. Martens and T. Naes, Multivariate Calibration, (John Wiley and Sons, Chichester, UK, 1989).
  24. D. E. Myers, L. D. Anderson, R. P. Seifert, J. P. Ortner, C. E. Cooper, G. J. Beilman and J. D. Mowlem, "Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy," J. Biomed. Opt. 10, 034017 (2005). [CrossRef]
  25. M. S. Patterson, B. Chance, and B. C. Wilson, ‘‘Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,’’Appl. Opt. 28, 2331-2336 (1989).
  26. S. Fantini, M. A. Franceschini-Fantini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, "Frequency domain multichannel optical detector for non-invasive tissue spectroscopy and oximetry," Opt. Eng. 34, 32-42 (1995). [CrossRef]
  27. A. A. Stratonnikov and V. B. Loschenov, "Evaluation of blood oxygen saturation in vivo from diffuse reflectance spectra," J. Biomed. Opt. 6, 457-467 (2001). [CrossRef]
  28. S. Homma, T. Fukunaga, and A. Kagaya, "Influence of adipose tissue thickness on near-infrared spectroscopic signal in the measurement of human muscle," J. Biomed. Opt. 1, 418-424 (1996). [CrossRef]
  29. K. Yamamoto, M. Niwayama, T. Shiga, L. Lin, N. Kudo, and M. Takahashi, "A near-infrared muscle oximeter that can correct the influence of a subcutaneous fat layer," Proc. SPIE 3257, 146-155 (1998).
  30. L. Lin, M. Niwayama, T. Shiga, N. Kudo, M. Takahashi, and K. Yamamoto, "Influence of a fat layer on muscle oxygenation measurement using near-IR spectroscopy: quantitative analysis based on two-layered phantom and Monte Carlo simulation," Front Med. Biol. Eng. 10, 43-58 (2000). [CrossRef]
  31. M. C. van Beekvelt, M. S. Borghuis, B. G. van Engelen, R. A. Wevers, and W. N. Colier, "Adipose tissue thickness affects in vivo quantitative near-IR spectroscopy in human skeletal muscle," Clin. Sci. 101, 21-28 (2001).
  32. E. B. Wassenaar and J. G. H. van den Brand, "Reliability of near-infrared spectroscopy in people with dark skin pigmentation," J. Clin. Monit. Comput. 19, 195-199 (2005). [CrossRef]
  33. M. J. Buono, P. W. Miller, C. Hom, R. S. Pozos, and F. W. Kolkhorst, "Skin blood flow affects in vivo near-infrared spectroscopy measurements in human skeletal muscle," Jpn. J. Physiol. 55, 241-244 (2005). [CrossRef]
  34. Y. Yang, M. R. Landry, O. O. Soyemi, M. A. Shear, D. S. Anunciacion and B. R. Soller, "Simultaneous correction of the influence of skin color and fat on tissue spectroscopy by use of a two-distance fiber-optic probe and orthogonalization technique," Opt. Lett. 30, 2269-2281 (2005). [CrossRef]
  35. S. J. Matcher, M. Cope, and D. T. Delpy, "In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy," Appl. Opt. 36, 386-396 (1997).
  36. N. Iftimia and H. Jiang, "Quantitative optical image reconstruction of turbid media by use of direct-current measurements," Appl. Opt. 39, 5256-5261 (2000).
  37. S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, D. T. Delpy, "Performance comparison of several published tissue near-infrared spectroscopy algorithms," Anal. Biochem. 227, 54-68 (1995). [CrossRef]
  38. Biomedical optics laboratory, University of London, "Specific extinction spectra of tissue chromophores," http://www.medphys.ucl.ac.uk/research/borl/research/NIR_topics/spectra/spectra.htm>
  39. S. R. Arridge, M. Cope, and D. T. Delpy. "The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis," Phys. Med. Biol. 37, 1531-1560 (1992). [CrossRef]
  40. T. Papaioannou, N. W. Preyer, Q. Fang, A. Brightwell, M. Carnohan, G. Cottone, R. Ross, L. R. Jones, and L. Marcu, "Effects of fiber-optic probe design and probe-to-target distance on diffuse reflectance measurements of turbid media: an experimental and computational study at 337 nm," Appl. Opt. 43, 2846-2860 (2004). [CrossRef]
  41. R. A. De Blasi, S. Palmisani, D. Alampi, M. Mercieri, R. Romano, S. Collini, and G. Pinto, "Microvascular dysfunction and skeletal muscle oxygenation assessed by phase-modulation near-infrared spectroscopy in patients with septic shock," Intensive Care Med. 31, 1661-1668 (2005). [CrossRef]
  42. T. Hamaoka, T. Katsumura, N. Murase, S. Nishio, T. Osada, T. Sako, H. Higuchi, Y. Kurosawa, T. Shimomitsu, M. Miwa, and B. Chance, "Quantification of ischemic muscle deoxygentation by near infrared time-resolved spectroscopy," J. Biomed. Opt. 5, 102-105 (2000). [CrossRef]
  43. M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier and E. Gratton, "Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media," Appl. Opt. 37, 7447-7458 (1998).
  44. B. A. Crookes, S. M. Cohn, S. Bloch, J. Amortegui, R. Manning, P. Li, M. S. Proctor, A. Hallal, L. H. Blackbourne, R. Benjamin, D. Soffer, F. Habib, C. I. Schulman, R. Duncan, and K. G. Proctor. "Can near-infrared spectroscopy identify the severity of shock in trauma patients?" J. Trauma. 58, 806-813; discussion, 813-816, (2005).
  45. M. Girardis, L. Rinaldi, S. Busani, I. Flore, S. Mauro, and A. Pasetto, "Muscle perfusion and oxygen consumption by near-infrared spectroscopy in septic-shock and non-septic-shock patients," Intensive Care Med. 29, 1173-1176 (2003). [CrossRef]
  46. T. Komiyama, V. Quaresima, H. Shigematsu and M. Ferrari, "Comparison of two spatially resolved near-infrared photometers in the detection of tissue oxygen saturation: poor reliability at very low oxygen saturation," Clin. Sci. 101, 715-718 (2001).
  47. S. Homma and A. Kagaya, "Detection of oxygen consumption in different forearm muscles during handgrip exercise by spatially resolved NIR spectroscopy," Adv. Exp. Med. Biol. 428, 327-332 (1997).
  48. J. Creteur, T. Carollo, G. Soldati, G. Buchele, D. D. Backer, J. L. Vincent, "The prognostic value of muscle StO2 in septic patients," Intensive Care Med. 33, 1549-1556 (2007). [CrossRef]
  49. D. P. Swain and R. N. Pittman, "Oxygen exchange in the microcirculation of hamster retractor muscle," Am. J. Physiol. 256, H247-H255 (1989).
  50. L. C. Sorensen and G. Greisen, "Precision of measurement of cerebral tissue oxygenation index using near-infrared spectroscopy in preterm neonates," J. Biomed. Opt. 11, 054005 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited