OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 21 — Oct. 17, 2007
  • pp: 13930–13935

Quasi-two-level Yb:KYW laser with a volume Bragg grating

Jonas E. Hellström, Björn Jacobsson, Valdas Pasiskevicius, and Fredrik Laurell  »View Author Affiliations


Optics Express, Vol. 15, Issue 21, pp. 13930-13935 (2007)
http://dx.doi.org/10.1364/OE.15.013930


View Full Text Article

Enhanced HTML    Acrobat PDF (191 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using a volume Bragg grating as input coupler, we demonstrate an Yb:KYW laser with a very small quantum defect (1.6%) and an output power of 3.6 W. The laser was longitudinally diode-pumped at 982 nm and the laser wavelength was determined by the grating to 998 nm, with a laser bandwidth of 10 GHz (33 pm). Due to the low quantum defect, the laser should be readily scalable to 20 W or more without critical thermal effects.

© 2007 Optical Society of America

OCIS Codes
(050.7330) Diffraction and gratings : Volume gratings
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.6810) Lasers and laser optics : Thermal effects
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 28, 2007
Revised Manuscript: October 3, 2007
Manuscript Accepted: October 3, 2007
Published: October 8, 2007

Citation
Jonas E. Hellström, Björn Jacobsson, Valdas Pasiskevicius, and Fredrik Laurell, "Quasi-two-level Yb:KYW laser with a volume Bragg grating," Opt. Express 15, 13930-13935 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-21-13930


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Jeong, J. K. Sahu, D. N. Payne and J. Nilsson, "Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power," Electron. Lett. 40, 470-472 (2004). [CrossRef]
  2. R. Peters, C. Kränkel, K. Petermann and G. Huber, "Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency," Opt. Express 15, 7075-7082 (2007). [CrossRef] [PubMed]
  3. N. V. Kuleshov, A. A. Lagatsky, A. V. Podlipensky, V. P. Mikhailov and G. Huber, "Pulsed laser operation of Yb-doped KY(WO4)2 and KGd(WO4)2," Opt. Lett. 22, 1317-1319 (1997). [CrossRef]
  4. S. Biswal, S. P. O'Connor, and S. R. Bowman, "Thermo-optical parameters measured in ytterbium-doped potassium gadolinium tungstate," Appl. Opt. 44, 3093-3097 (2005). [CrossRef] [PubMed]
  5. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway and W. F. Krupke, "Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+," IEEE J. Quantum Electron. 28, 2619-2630 (1992). [CrossRef]
  6. S. Chénais, F. Balembois, F. Druon, G. Lucas-Leclin, P. Georges, "Thermal lensing in diode-pumped ytterbium Lasers-Part II: evaluation of quantum efficiencies and thermo-optic coefficients," IEEE J. Quantum Eletron. 40, 1235-1243 (2004). [CrossRef]
  7. S. Biswal, S. P. O'Connor and S. R. Bowman, "Nonradiative losses in Yb:KGd(WO4)2 and Yb:Y3Al5O12," Appl. Phys. Lett. 89, 091911 (2006). [CrossRef]
  8. O. Efimov, L. Glebov, L. Glebova, K. Richardson and V. Smirnov, "High-Efficiency Bragg Gratings in Photothermorefractive Glass," Appl. Opt. 38, 619-627 (1999). [CrossRef]
  9. B. Volodin, S. Dolgy, E. Melnik, E. Downs, J. Shaw and V. Ban, "Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings," Opt. Lett. 29, 1891-1893 (2004). [CrossRef] [PubMed]
  10. B. Jacobsson, M. Tiihonen, V. Pasiskevicius and F. Laurell, "Narrowband bulk Bragg grating optical parametric oscillator," Opt. Lett. 30, 2281-2283 (2005). [CrossRef] [PubMed]
  11. T. Chung, A. Rapaport, V. Smirnov, L. B. Glebov, M. C. Richardson and M. Bass, "Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror," Opt. Lett. 31, 229-231 (2006). [CrossRef] [PubMed]
  12. B. Jacobsson, V. Pasiskevicius and F. Laurell, "Tunable single-longitudinal-mode ErYb:glass laser locked by a bulk glass Bragg grating," Opt. Lett. 31, 1663-1665 (2006). [CrossRef] [PubMed]
  13. B. Jacobsson, V. Pasiskevicius and F. Laurell, "Single-longitudinal-mode Nd-laser with a Bragg-grating Fabry-Perot cavity," Opt. Express 14, 9284-9292 (2006). [CrossRef] [PubMed]
  14. B. Jacobsson, J. E. Hellström, V. Pasiskevicius and F. Laurell, "Widely tunable Yb:KYW laser with a volume Bragg grating," Opt. Express 15, 1003-1005 (2007). [CrossRef] [PubMed]
  15. J. Petit, P. Goldner, B. Viana, J. Didierjean, F. Balembois, F. Druon and P. Georges, "Quest of Athermal Solid-State Laser: Case of Yb:CaGdAlO4," in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2006), paper WD1.
  16. M. Jacquemet, F. Balembois, S. Chénais, F. Druon, P. Georges, R. Gaumé and B. Ferrand, "First diode-pumped Yb-doped solid-state laser continuously tunable between 1000 and 1010 nm," Appl. Phys. B 78, 13-18 (2004). [CrossRef]
  17. L. McDonagh, R. Wallenstein, R. Knappe and A. Nebel, "High-efficiency 60 W TEM00 Nd:YVO4 oscillator pumped at 888 nm," Opt. Lett. 31, 3297-3299 (2006). [CrossRef] [PubMed]
  18. M. Castaing, E. Hérault, F. Balembois, P. Georges, C. Varona, P. Loiseau and G. Aka, "Diode-pumped Nd:YAG laser emitting at 899 nm and below," Opt. Lett. 32, 799-801 (2007). [CrossRef] [PubMed]
  19. E. Hérault, F. Balembois and P. Georges, "Nd:GdVO4 as a three-level laser at 879 nm," Opt. Lett. 31, 2731-2733 (2006). [CrossRef] [PubMed]
  20. J. E. Hellström, S. Bjurshagen, V. Pasiskevicius, J. Liu, V. Petrov and U. Griebner, "Efficient Yb:KGW lasers end-pumped by high-power diode bars," Appl. Phys. B 83, 235-239 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited