OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 21 — Oct. 17, 2007
  • pp: 13988–13996

Monte Carlo simulation of propagation of a short light beam through turbulent oceanic flow

D. J. Bogucki, J. Piskozub, M.-E. Carr, and G. D. Spiers  »View Author Affiliations


Optics Express, Vol. 15, Issue 21, pp. 13988-13996 (2007)
http://dx.doi.org/10.1364/OE.15.013988


View Full Text Article

Enhanced HTML    Acrobat PDF (440 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We use Monte Carlo time-dependent simulations of light pulse propagation through turbulent water laden with particles to investigate the application of Multiple Field Of View (MFOV) lidar to detect and characterize oceanic turbulence. Inhomogeneities in the refractive index induced by temperature fluctuations in turbulent ocean flows scatter light in near-forward angles, thus affecting the near-forward part of oceanic water scattering phase function. Our results show that the oceanic turbulent signal can be detected by analyzing the returns from a MFOV lidar, after re-scaling the particulate back scattering phase function.

© 2007 Optical Society of America

OCIS Codes
(010.7060) Atmospheric and oceanic optics : Turbulence
(010.7350) Atmospheric and oceanic optics : Wave-front sensing

ToC Category:
Atmospheric and oceanic optics

History
Original Manuscript: July 30, 2007
Revised Manuscript: September 30, 2007
Manuscript Accepted: October 6, 2007
Published: October 11, 2007

Virtual Issues
Vol. 2, Iss. 11 Virtual Journal for Biomedical Optics

Citation
D. J. Bogucki, J. Piskozub, M.-E. Carr, and G. D. Spiers, "Monte Carlo simulation of propagation of a short light beam through turbulent oceanic flow," Opt. Express 15, 13988-13996 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-21-13988


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. J. Bogucki, J. A. Domaradzki, R. E. Ecke, and R. C. Truman, "Light scattering on oceanic turbulence," Appl. Opt. 43, 5662-5676 (2004). [CrossRef] [PubMed]
  2. D. Bogucki, J. A. Domaradzki, D. Stramski, and J. R. V. Zaneveld, "Comparison of nearforward scattering on turbulence and particles," Appl. Opt. 37, 4669-4677 (1998). [CrossRef]
  3. J. S. Jaffe, "Monte-carlo modeling of underwater-image formation - validity of the linear and small-angle approximations," Appl. Opt. 34, 5413-5421 (1995). [CrossRef] [PubMed]
  4. D. M. Farmer and J. R. Gemmrich, "Measurements of temperature fluctuations in breaking surface waves," J. Phys. Oceanogr. 26, 816-825 (1996). [CrossRef]
  5. T. M. Dillon, "The energetics of overturning structures: Implications for the theory of fossil turbulence," J. Phys. Oceanogr. 14, 541-549 (1984). [CrossRef]
  6. A. Anis and J. N. Moum, "Surface wave-turbulence interactions: scaling ?(z) near the sea surface," J. Phys. Oceanogr. 25, 2025-2045 (1995). [CrossRef]
  7. C. M. R. Platt, "Remote Sounding of High Clouds. III: Monte Carlo Calculations of Multiple-Scattered Lidar Returns," J. Atmospheric Sciences 38, 156-167.
  8. E. Eloranta, "Practical model for the calculation of multiply scattered lidar returns," Appl. Opt. 37, 2464-2472 (1998). [CrossRef]
  9. L. Bissonnette, G. Roy, L. Poutier, S. Cober, and G. Isaac, "Multiple-scattering lidar retrieval method: tests on Monte Carlo simulations and comparisons with in situ measurements," Appl. Opt 41, 6307-6324 (2002). [CrossRef] [PubMed]
  10. R. E. Walker, Marine light field statistics, (A Wiley Interscience Publication, 1994) p. 660 .
  11. J. Piskozub, P. Flatau, and J. Zaneveld, "Monte Carlo Study of the Scattering Error of a Quartz Reflective Absorption Tube," J. Atmospheric and Oceanic Technol. 18, 438-445 (2001). [CrossRef]
  12. V. Banakh, I. Smalikho, and C. Werner, "Numerical Simulation of the Effect of Refractive Turbulence on Coherent Lidar Return Statistics in the Atmosphere," Appl. Opt 39, 5403-5414 (2000). [CrossRef]
  13. M. Jonasz and G. Fournier, Light Scattering by Particles in Water: Theoretical and Experimental Foundations (Academic Press, 2007).
  14. M. Twardowski, E. Boss, J. Macdonald, W. Pegau, A. Barnard, and J. Zaneveld, "A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters," J. Geophys. Research 106, 14,129-14,142 (2001). [CrossRef]
  15. V. Haltrin, "One-parameter two-term Henyey-Greenstein phase function for light scattering in seawater," Appl. Opt. 41, 1022-1028 (2002). [CrossRef] [PubMed]
  16. H. R. Gordon, "Sensitivity of radiative transfer to small-angle scattering in the ocean: quantitative assessment," Appl. Opt. 32, 7505-7511 (1993). [CrossRef] [PubMed]
  17. I. Katsev, E. Zege, A. Prikhach, and I. Polonsky, "Efficient technique to determine backscattered light power for various atmospheric and oceanic sounding and imaging systems," J. Opt. Soc. Am. A 14, 1338-1346 (1997). [CrossRef]
  18. A. Kim and M. Moscoso, "Beam propagation in sharply peaked forward scattering media," J. Opt. Soc. Am. A 21(5), 797-803 (2004). [CrossRef]
  19. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons, New York, 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited