OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 21 — Oct. 17, 2007
  • pp: 14028–14037

Coherent anti-Stokes Raman scattering microscopy using photonic crystal fiber with two closely lying zero dispersion wavelengths

Sangeeta Murugkar, Craig Brideau, Andrew Ridsdale, Majid Naji, Peter K. Stys, and Hanan Anis  »View Author Affiliations

Optics Express, Vol. 15, Issue 21, pp. 14028-14037 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (402 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate coherent anti-Stokes Raman scattering (CARS) microscopy of lipid-rich structures using a single unamplified femtosecond Ti:sapphire laser and a photonic crystal fiber (PCF) with two closely lying zero dispersion wavelengths (ZDW) for the Stokes source. The primary enabling factor for the fast data acquisition (84 μs per pixel) in the proof-of-principle CARS images, is the low noise supercontinuum (SC) generated in this type of PCF, in contrast to SC generated in a PCF with one ZDW. The dependence of the Stokes pulse on average input power, pump wavelength, pulse duration and polarization is experimentally characterized. We show that it is possible to control the spectral shape of the SC by tuning the pump wavelength of the input pulse and the consequence for CARS microscopy is discussed.

© 2007 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:

Original Manuscript: September 13, 2007
Revised Manuscript: October 4, 2007
Manuscript Accepted: October 6, 2007
Published: October 11, 2007

Virtual Issues
Vol. 2, Iss. 11 Virtual Journal for Biomedical Optics

Sangeeta Murugkar, Craig Brideau, Andrew Ridsdale, Majid Naji, Peter K. Stys, and Hanan Anis, "Coherent anti-Stokes Raman scattering microscopy using photonic crystal fiber with two closely lying zero dispersion wavelengths," Opt. Express 15, 14028-14037 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. X. Cheng and X. S. Xie, " Coherent anti-Stokes Raman scattering microscopy: Instrumentation, Theory, and applications," J. Phys. Chem B 108, 827-840 (2004). [CrossRef]
  2. F. Ganikhanov, S. Carrasco, X. S. Xie, M. Katz, W. Seitz and D. Kopf, "Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 31, 1292-1294 (2006). [CrossRef] [PubMed]
  3. C. L. Evans, E. O., Potma, M Puoris’haag., D. Côté, C. P. Lin, and S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,". Proc. Natl. Acad. Sci. USA 102, 16807-16812 (2005). [CrossRef] [PubMed]
  4. T. Kee and M. T. Cicerone, "Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy," Opt. Lett. 29, 2701 - 2703 (2004). [CrossRef] [PubMed]
  5. H. Kano and H. Hamaguchi, "Vibrationally resonant imaging of a single living cell by supercontinuum-based multiplex coherent anti-Stokes Raman scattering microspectroscopy," Opt. Express,  13, 1322-1327 (2005). [CrossRef] [PubMed]
  6. E. R. Andresen, H. N. Paulsen, V. Birkedal, J. Thogersen and S. R. Keiding, "Broadband multiplex coherent anti-Stokes Raman scattering microscopy employing photonic crystal fibers," J. Opt. Soc. Am. B 22, 1934 - 1938 (2005). [CrossRef]
  7. E. R. Andresen, C. K. Nielsen, J. Thøgersen and S. R. Keiding "Fiber laser-based light source for coherent anti-Stokes Raman scattering microspectroscopy," Opt. Express 15, 4848 - 4856 (2007). [CrossRef] [PubMed]
  8. N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, "Noise amplification during supercontinuum generation in microstructure fiber," Opt. Lett. 28, 944 - 946 (2003). [CrossRef] [PubMed]
  9. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler "Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber," Phys. Rev. Lett.  90, 113904 (2003). [CrossRef] [PubMed]
  10. J. M. Dudley, G. Genty, S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys 78, 1135 - 1184 (2006). [CrossRef]
  11. K. Hilligsoe, T. Andersen, H. Paulsen, C. Nielsen, K. Molmer, S. Keiding, R. Kristiansen, K. Hansen and J. Larsen, "Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths," Opt. Express 12, 1045 - 1054 (2004). [CrossRef] [PubMed]
  12. A. Aguirre, N. Nisizawa, J. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, "Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm," Opt. Express 14, 1145-1160 (2006). [CrossRef] [PubMed]
  13. A. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, "Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses," J. Opt. Soc. Am. B 19, 2165-2170 (2002). [CrossRef]
  14. M. H. Frosz, P. Falk, and O. Bang, "The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength," Opt. Express 13, 6181-6192 (2005). [CrossRef] [PubMed]
  15. H. Zhang, S. Yu, J. Zhang, and W. Gu, "Effect of frequency chirp on supercontinuum generation in photonic crystal fibers with two zero-dispersion wavelengths," Opt. Express 15, 1147-1154 (2007). [CrossRef] [PubMed]
  16. R. L. Fork, O. E. Martinez, and J. P. Gordon, "Negative dispersion using pair of prisms," Opt. Lett. 9, 150-152 (1984). [CrossRef] [PubMed]
  17. H. Wang and A.M. Rollins, "Optimization of dual-band continuum light source for ultrahigh-resolution optical coherence tomography," Appl. Opt. 46, 1787-1794 (2007). [CrossRef] [PubMed]
  18. M. Pezolet and D Georgescauld, "Raman Spectroscopy of Nerve Fibers. A study of membrane lipids under steady state conditions," Biophys. J. 47, 367-372 (1985). [CrossRef] [PubMed]
  19. K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, "High spectral resolution CARS spectroscopy using chirped pulses," Chem. Phys. Lett. 387, 436-441 (2004). [CrossRef]
  20. E.H.K. Stelzer, "The Intermediate Optical System in Confocal Microscopes," in The handbook of biological confocal microscopy, J. Pawley, ed. (IMR Press: Madison. 1989).
  21. H. Wang, Y. Fu, P. Zickmund, Riyi Shi and Ji-Xin Cheng, "Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues," Biophys. J. 89, 581-591 (2005). [CrossRef] [PubMed]
  22. H. Kano and H. Hamaguchi, "In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber," Opt. Express 14, 2798 - 2804 (2006). [CrossRef] [PubMed]
  23. J. A. Palero, V. O. Boer, J. C. Vijverberg, H. C. Gerritsen, and H. J. C. M. Sterenborg, "Short-wavelength twophoton excitation fluorescence microscopy of tryptophan with a photonic crystal fiber based light source," Opt. Express 13, 5363-5368 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited