OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 21 — Oct. 17, 2007
  • pp: 14044–14056

Characterization of near-infrared low energy ultra-short laser pulses for portable applications of laser induced breakdown spectroscopy

Alexander W. Schill, David A. Heaps, Dimitra N. Stratis-Cullum, Bradley R. Arnold, and Paul M. Pellegrino  »View Author Affiliations

Optics Express, Vol. 15, Issue 21, pp. 14044-14056 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (268 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the delivery of low energy ultra-short (<1 ps) laser pulses for laser induced breakdown spectroscopy (LIBS). Ultra-short pulses have the advantage of high peak irradiance even at very low pulse energies. This opens the possibility to use compact, rare-earth doped fiber lasers in a portable platform for point detection applications using LIBS for elemental analysis. The use of low energy ultra-short pulses minimizes the generation of a broad continuum background in the emission spectrum, which permits the use of non-gated detection schemes using very simple and compact spectrometers. The pulse energies used to produce high-quality LIBS spectra in this investigation are some of the lowest reported and we investigate the threshold pulse requirements for a number of near IR pulse wavelengths (785-1500 nm) and observe that the pulse wavelength has no effects on the threshold for observation of plasma emission or the quality of the emission spectra obtained.

© 2007 Optical Society of America

OCIS Codes
(320.7090) Ultrafast optics : Ultrafast lasers
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

ToC Category:
Ultrafast Optics

Original Manuscript: July 5, 2007
Revised Manuscript: September 19, 2007
Manuscript Accepted: September 22, 2007
Published: October 11, 2007

Alexander W. Schill, David A. Heaps, Dimitra N. Stratis-Cullum, Bradley R. Arnold, and Paul M. Pellegrino, "Characterization of near-infrared low energy ultra-short laser pulses for portable applications of laser induced breakdown spectroscopy," Opt. Express 15, 14044-14056 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. Cremers and L. J. Radziemski, "Detection of chlorine and fluorine in air by laser-induced breakdown spectroscopy," Anal. Chem. 55, 1252-1256 (1983). [CrossRef]
  2. C. K. Williamson, R. G. Daniel, K. L. McNesby, and A. W. Miziolek, "Laser-induced breakdown spectroscopy for real-time detection of halon alternative agents," Anal. Chem. 70, 1186-1191 (1998). [CrossRef]
  3. R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, and P. D. French, "Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments," Spec. Acta. B 56, 777-793 (2001). [CrossRef]
  4. Andrew Freedman, Frank J. Iannarilli Jr., and Joda C. Wormhoudt, "Aluminum alloy analysis unsing microchip-laser induced breakdown spectroscopy," Spec. Acta. B 60, 1076-1082 (2005). [CrossRef]
  5. A. C. Samuels, F. C. DeLuciaJr., K. L. McNesby, and A. W. Miziolek, "Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential," Appl. Opt. 42, 6205-6209 (2003). [CrossRef] [PubMed]
  6. R. S. Harmon, F. C. DeLucia Jr., A. LaPointe, R. J. Winkel Jr., and A. W. Miziolek, "Discrimination and indentification of plastic landmine casings by single-shot broadband LIBS," in Detection and Remediation Technologies for Mines and Minelike Targets, SPIE 5794 (2005). [CrossRef]
  7. F. C. DeLuciaJr., A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. McNesby, A. LaPointe, R. J. WinkelJr., and A. W. Miziolek, "Laser-induced breakdown spectroscopy (LIBS): a promising versatile chemical sensor technology for hazardous material detection," IEEE Sens. J. 5, 681-689 (2005). [CrossRef]
  8. C. Bohling, D. Scheel, K. Hohmann, W. Schade, M. Reuter, and G. Holl, "Fiber-optic laser sensor for mine detection and verification," Appl. Opt. 45, 3817-3825 (2006). [CrossRef] [PubMed]
  9. C. Lopez-Moreno, S. Palanco, J. J. Laserna, F. DeLucia Jr., A. W. Miziolek, J. Rose, R. A. Walters, and A. I. Whitehouse, "Test of a stand-off laser-induced breakdown spectroscopy sensor for the detection of expolsive residues on solid surfaces," J. Anal. At. Spectrom. 21, 55-60 (2006). [CrossRef]
  10. R. S. Harmon, F. C. DeLuciaJr., A. LaPointe, and A. W. Miziolek, "Man-Portable LIBS for landmine detection," in Detection and Remediation Technologies for Mines and Minelike Targets, SPIE 6217 (2006). [CrossRef]
  11. B. Salle, D. A. Cremers, and S. Maurice, "Laser-induced breakdown spectroscopy for space exploration applications: influence of the ambient pressure on the calibration curves prepared from soil and clay samples," Spec. Acta. B 60, 479-490 (2005). [CrossRef]
  12. Z. A. Arp, D. A. Cremers, and R. C. Wiens, "Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: applications to Mars polar exploration," Appl. Spec. 58, 897-909 (2004). [CrossRef]
  13. W. B. Lee, J. Y. Wu, and Y. I. Lee, "Recent applications of laser-induced breakdown spectrometry: a review of material approaches," Appl. Spec. Rev. 39, 27-97 (2004). [CrossRef]
  14. J. Serbin, T. Bauer, and C. Fallnich, "Femtosecond lasers as novel tool in dental surgery," Appl. Surf. Sci. 197, 737-740 (2002). [CrossRef]
  15. H. Lubatschowski, G. Maatz, and A. Heisterkamp, "Applications of ultrashort laser pulses for intrastromal refractive surgery," Graefes Arch. Clin. Exp. Ophth. 238, 33-39 (2000). [CrossRef]
  16. A. Giakoumaki, K. Melessanaki, and D. Anglos, "Laser-induced breakdown spectroscopy (LIBS) in archaeological science-applications and prospects," Anal. Bioanal. Chem. 387, 749-760 (2007). [CrossRef]
  17. A. Brysbaert, K. Melessanaki, and D. Anglos, "Pigment analysis in Bronze Age Aegean and Eastern Mediterranean painted plaster by laser-induced breakdown spectroscopy (LIBS)," J. Arch. Sci. 33, 1095-1104 (2006). [CrossRef]
  18. K. Melessanaki, M. Mateo, and S. C. Ferrence, "The application of LIBS for the analysis of archaeological ceramic and metal artifacts," Appl. Surf. Sci. 197, 156-163 (2002). [CrossRef]
  19. K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, and S. M. Angel, "Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses," Appl. Spec. 55, 279-285 (2001). [CrossRef]
  20. S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, and D. M. Gold, "LIBS using dual- and ultra-short laser pulses," Fresenius J. Anal. Chem. 369, 320-327 (2001). [CrossRef] [PubMed]
  21. J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B. W. ColstonJr., J. Chance Carter, and S. M. Angel, "Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses," Appl. Opt. 42, 6099-6106 (2003). [CrossRef] [PubMed]
  22. M. Baudelet, L. Guyon, J. Yu, J. Wolf, T. Amodeo, E. Frejafon, and P. Laloi, "Femtosecond time-resolved laser-induced breakdown spectroscopy for detection and identification of bacteria: a comparison to the nanosecond regime," J. Appl. Phys. 99, 1-9 (2006). [CrossRef]
  23. K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, and S. M. Angel, "Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation," Appl. Spec. 55, 286-291 (2001). [CrossRef]
  24. P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, "Machining of sub-micron holes using a femtosecond laser at 800 nm," Opt. Commun. 114, 106-110 (1995). [CrossRef]
  25. F. Korte, S. Adams, A. Egbert, C. Fallnich, A. Ostendorf, S. Nolte, M. Will, J. P. Ruske, B. N. Chichkov, and A. Tuennermann, "Sub-diffraction limited structuring of solid targets with femtosecond pulses," Opt. Express 7, 41-49 (2000). [CrossRef] [PubMed]
  26. J. Koch, F. Korte, C. Fallnich, A. Ostendorf, and B. N. Chichkov, "Direct-write subwavelength structuring with femtosecond laser pulses," Opt. Eng. 44, 051103(1-5) (2005). [CrossRef]
  27. C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, "Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy," Opt. Lett. 26, 93-95 (2001). [CrossRef]
  28. R. L. Harzic, H. Schuck, D. Sauer, T. Anhut, I. Riemann, and K. Koenig, "Sub-100 nm nanostructuring of silicon by ultrashort laser pulses," Opt. Express 13, 6651-6656 (2005). [CrossRef] [PubMed]
  29. N. Stojanovic, D. von der Linde, K. Sokolowski-Tinten, U. Zastrau, F. Perner, E. Foerster, R. Sobierajski, R. Neitubyc, M. Jurek, D. Klinger, J. Pelka, J. Krzywinski, L. Juha, J. Cihelka, A. Velyhan, S. Koptyaev, V. Hajkova, J. Chalupsky, J. Kuba, T. Tschentscher, S. Toleikis, S. Duesterer, and H. Redlin, "Ablation of solids using a femtosecond extreme ultraviolet free electron laser," Appl. Phys. Lett. 89, 1-3 (2006). [CrossRef]
  30. G. W. Rieger, M. Taschuk, Y. Y. Tsui, and R. Fedosejevs, "Comparative study of laser-induced plasma emission from microjoule picosecond and nanosecond KrF-laser pulses," Spec. Acta. B 58, 497-510 (2003). [CrossRef]
  31. I. B. Gornushkin, K. Amponsah-Manager, B. W. Smith, N. Omenetto, and J. D. Winefordner, "Microchip laser-induced breakdown spectroscopy: a preliminary feasiblity investigation," Appl. Spec. 58, 762-769 (2004). [CrossRef]
  32. K. Amponsah-Manager, N. Omenetto, B. W. Smith, I. B. Gornushkin, and J. D. Winefordner, "Microchip laser ablation of metals: investigation of the ablation process in view of its application to laser induced breakdown spectroscopy," J. Anal. At. Spectrom. 20, 544-551 (2005). [CrossRef]
  33. C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, and J. D. Winefordner, "Quantitation of low-alloy steel samples by powerchip laser induced breakdown spectroscopy," J. Anal. At. Spectrom. 20, 552-556 (2005). [CrossRef]
  34. J. Wormhoudt, F. J. IannarilliJr., S. Jones, K. D. Annen, and A. Freedman, "Determination of carbon in steel by laser-induced breakdown spectroscopy using a microchip laser and miniature spectrometer," Appl. Spec. 59, 1098-1102 (2005). [CrossRef]
  35. IgorV. Cravetchi, Mike T. Taschuk, Ying Y. Tsui, and Robert Fedosejevs, "Evaluation of femtosecond LIBS for spectrochemical microanalysis of aluminum alloys," Anal. Bioanal. Chem. 385, 287-294 (2006). [CrossRef] [PubMed]
  36. M. T. Taschuk, S. E. Kirkwood, Y. Y. Tsui, and R. Fedosejevs, "Quantitative emission from femtosecond microplasmas for laser-induced breakdown spectroscopy," J. of Physics: Conf. Ser. 59, 328-332 (2007). [CrossRef]
  37. M. Hashida, A. F. Semerok, O. Gobert, G. Petite, Y. Izawa, and J. F. Wagner, "Ablation threshold dependence on pulse duration for copper," Appl. Surf. Sci. 197-198, 862-867 (2002). [CrossRef]
  38. T. Tong, J. Li, and J. P. Longtin, "Real-time control of ultrafast laser micromachining by laser-induced breakdown spectroscopy," Appl. Opt. 43, 1971-1980 (2004). [CrossRef] [PubMed]
  39. G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, P. A. Benedetti, F. Brioschi, and F. Ferrario, "Quantitative analysis of aluminum alloys by low-energy, high-repetition rate laser-induced breakdown spectroscopy," J. Anal. At. Spectrom. 21, 697-702 (2006). [CrossRef]
  40. A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, "Short-pulse laser damage in transparent materials as a function of pulse duration," Phys. Rev. Lett. 82, 3883-3886 (1999). [CrossRef]
  41. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tuennermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996). [CrossRef]
  42. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Nanosecond-to-femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996). [CrossRef]
  43. P. P. Pronko, P. A. VanRompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, and G. Mourou, "Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses," Phys. Rev. B 58, 2387-2390 (1998). [CrossRef]
  44. D. von der Linde and K. Sokolowski-Tinten, "The physical mechanism of short-pulse laser ablation," Appl. Surf. Sci. 154-155, 1-10 (2000). [CrossRef]
  45. D. M. Simanovskii, H. A. Schwettman, H. Lee, and A. J. Welch, "Midinfrared optical breakdown in transparent dieletrics," Phys. Rev. Lett.  91, 107601(4) (2003). [CrossRef] [PubMed]
  46. M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, "Scaling laws of femtosecond laser pulse induced breakdown in oxide films," Phys. Rev. B 71, 1-7 (2005). [CrossRef]
  47. F. Watanabe, D. G. Cahill, B. Gundrum, and R. S. Averback, "Ablation of crystalline oxides by infrared femtosecond laser pulses," J. Appl. Phys. 100, 1-6 (2006). [CrossRef]
  48. L. J. Radziemski and D. A. Cremers, Laser Induced Plasmas and Applications (CRC Press, New York, 1989).
  49. L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).
  50. T. Gunaratne, M. Kangas, S. Singh, A. Gross, and M. Dantus, "Influence of bandwidth and phase shaping on laser induced breakdown spectroscopy with ultrashort laser pulses," Chem. Phys. Lett. 423, 197-201 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited