OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 21 — Oct. 17, 2007
  • pp: 14086–14098

Shape based Monte Carlo code for light transport in complex heterogeneous tissues

Eduardo Margallo-Balbás and Patrick J. French  »View Author Affiliations

Optics Express, Vol. 15, Issue 21, pp. 14086-14098 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (497 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A Monte Carlo code for the calculation of light transport in heterogeneous scattering media is presented together with its validation. Triangle meshes are used to define the interfaces between different materials, in contrast with techniques based on individual volume elements. This approach allows to address realistic problems in a flexible way. A hierarchical spatial organisation enables a fast photon-surface intersection test. The application of the new environment to evaluate the impact of the trabecular structure of bone on its optical properties is demonstrated. A model of the trabecular micro structure recovered from microCT data was used to compute light distribution within tissue. Time-resolved curves across a spherical bone volume were computed. The work presented enables simulation of radiative transport in complex reality-based models of tissue and serves as a powerful, generic tool to study the effect of heterogeneity in the field of biomedical optics.

© 2007 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(170.3660) Medical optics and biotechnology : Light propagation in tissues

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: July 17, 2007
Revised Manuscript: September 2, 2007
Manuscript Accepted: September 3, 2007
Published: October 11, 2007

Virtual Issues
Vol. 2, Iss. 11 Virtual Journal for Biomedical Optics

Eduardo Margallo-Balbás and Patrick J. French, "Shape based Monte Carlo code for light transport in complex heterogeneous Tissues," Opt. Express 15, 14086-14098 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Gu, Q. Zhang, M. Bartlett, L. Schutz, L. Fajardo, and H. Jiang, "Differentiation of cysts from solid tumours in the breast with Diffuse Optical Tomography," Acad. Radiol. 11, 53-60 (2004). [CrossRef] [PubMed]
  2. P. Taroni, G. Danesini, A. Torricelli, A. Pifferi, L. Spinelli and R. Cubbedu, "Clinical trial of time-resolved scanning optical mammography at 4 wavelengths between 683 and 975 nm," J. Biomed. Opt. 9, 464-473 (2004). [CrossRef] [PubMed]
  3. S. Brown, E. Brown, and I. Walker, "The present and future role of photodynamic therapy in cancer treatment," Oncology 5, 497-508 (2004). [PubMed]
  4. S. Chandrasekhar, Radiative Transfer (Oxford University Press, London, 1960).
  5. L. Wang, S. Jacques, and L. Zheng, "MCML - Monte Carlo modeling of light transport in multi-layered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995). [CrossRef]
  6. T. Pfefer, J. Barton, E. Chan, M. Ducros, B. Sorg, T. Milner, J. Nelson, and A. Welch, "A three-dimensional modular adaptable grid numerical model for light propagation during laser irradiation of skin tissue," IEEE J. Sel. Top. Quantum Electron. 2, 934-942 (1996). [CrossRef]
  7. D. Boas, J. Culver, J. Stott, and A. Dunn, "Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head," Opt. Express 10, 159-170 (2002). [PubMed]
  8. D. Côté and I. Vitkin, "Robust concentration determination of optically active molecules in turbid media with validated three-dimensional polarization sensitive Monte Carlo calculations," Opt. Express 13, 148-163 (2005). [CrossRef] [PubMed]
  9. F. Brown, R. Barrett, T. Booth, J. Bull, L. Cox, R. Forster, J. Goorley, R. Mosteller, S. Post, R. Prael, E. Selcow, A. Sood and J. Sweezy, "MCNP Version 5," Trans. Am. Nucl. Soc. 87, 273 (2002).
  10. J. Howell, "The Monte Carlo method in radiative heat transfer," J. Heat Transfer 120, 547-560 (1998). [CrossRef]
  11. A. Marshak and A. B. Davis, eds., 3D Radiative Transfer in Cloudy Atmospheres (Springer-Verlag, Berlin, 2005). [CrossRef]
  12. A. S. Glassner, Principles of Digital Image Synthesis (Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1994).
  13. E. Veach, "Robust Monte Carlo methods for light transport simulation," Ph.D. thesis, Stanford University (1997).
  14. E. Cerezo, F. Pérez, X. Pueyo, F. Serón, and F. Sillion, "A survey on participating media rendering techniques," Visual. Comput. 21, 303-328 (2005). [CrossRef]
  15. L. Szirmay-Kalos, V. Havran, B. Balász, and L. Szécsi, "On the efficiency of ray-shooting acceleration schemes," in SCCG ’02: Proceedings of the 18th spring conference on Computer graphics, pp. 97-106 (ACM Press, New York, NY, USA, 2002). [CrossRef]
  16. A. Talsma, B. Chance, and R. Graaff, "Corrections for inhomogeneities in biological tissue caused by blood vessels," J. Opt. Soc. Am. A 18, 932-939 (2001). [CrossRef]
  17. R. van Veen, W. Verkruysse, and H. Sterenborg, "Diffuse-reflectance spectroscopy from 500 to 1060 nm by correction for inhomogeneously distributed absorbers," Opt. Lett. 27, 246-248 (2002). [CrossRef]
  18. J. Barton, T. Pfeffer, and A. Welch, "Optical Monte Carlo modeling of a true port wine stain anatomy," Opt. Express 2, 391-396 (1998). [CrossRef] [PubMed]
  19. E. Okada, M. Firbank, M. Schweiger, S. Arridge, M. Cope, and D. Delpy, "Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head," Appl. Opt. 36, 21-31 (1997). [CrossRef] [PubMed]
  20. Y. Fukui, Y. Ajichi, and E. Okada, "Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models," Appl. Opt. 42, 2881-2887 (2003). [CrossRef] [PubMed]
  21. M. Firbank, S. Arridge, M. Schweiger, and D. Delpy, "An investigation of light transport through scattering bodies with non-scattering regions," Phys. Med. Biol. 41, 767-783 (1996). [CrossRef] [PubMed]
  22. I. Patrikeev, Y. Petrov, I. Petrova, D. Prough, and R. Esenaliev, "Monte Carlo modeling of optoacoustic signals from human internal jugular veins," Appl. Opt.,  46, 4820-4827 (2007). [CrossRef] [PubMed]
  23. L. Murrer, H. Marijnissen, and W. Start, "Monte Carlo simulations for endobronchial photodynamic therapy: the influence of variations in optical and geometrical properties and of realistic and eccentric light sources," Laser Surg. Med. 22, 193-206 (1998). [CrossRef]
  24. A. Pifferi, A. Torricelli, P. Taroni, A. Bassi, E. Chikoidze, E. Giambattistelli, and R. Cubeddu, "Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies," J. Biomed. Opt. 9, 474-479 (2004). [CrossRef] [PubMed]
  25. M. Beers, R. Berkow, eds. The Merck Manual of Diagnosis and Therapy, 17th ed. (Merck Research Laboratories, Whitehouse Station, NJ, 1999).
  26. F. Hartl, A. Tyndall, M. Kraenzlin, C. Bachmeier, C. Guckel, U. Senn, D. Hans, and R. Theiler, "Discriminatory ability of quantitative ultrasound parameters and bone mineral density in a population-based sample of postmenopausal women with vertebral fractures: results of the Basel Osteoporosis Study," J. Bone Miner. Res. 17, 321-330 (2002). [CrossRef] [PubMed]
  27. S. Nayak, I. Olkin, H. Liu, M. Grabe, M. Gould, I. Allen, D. Owens, and D. Bravata, "Meta-Analysis: accuracy of quantitative ultrasound for identifying patients with osteoporosis," Ann. Intern. Med. 144, 832-841 (2006). [PubMed]
  28. A. Takeuchi, R. Araki, S. Proskurin, Y. Takahashi, Y. Yamada, J. Ishii, S. Katayama, and A. Itabashi, "A new method of bone tissue measurement based upon light scattering," J. Bone Miner. Res. 12, 261-266 (1997). [CrossRef] [PubMed]
  29. N. Ugryumova, S. Matcher, and D. Attenburrow, "Measurement of bone mineral density via light scattering," Phys. Med. Biol. 49, 469-483 (2004). [CrossRef] [PubMed]
  30. J. Hebden, J. J. García Guerrero, V. Chernomordik, and A. H. Gandjbakhche, "Experimental evaluation of an anisotropic scattering model of a slab geometry," Opt. Lett. 29, 2518-2520 (2004). [CrossRef] [PubMed]
  31. "HDF5 - A New Generation of HDF," Available at http://hdf.ncsa.uiuc.edu/HDF5 (2000). NCSA, University of Illinois at Urbana Champaign.
  32. E. Margallo-Balbás, "Home page of TriMC3D," (2007), http://trimc3d.et.tudelft.nl/>
  33. T. Möller and B. Trumbore, "Fast, minimum storage ray-triangle intersection," J. Graph. Tools 2, 21-28 (1997).
  34. A. Glassner, "Space subdivision for fast ray tracing," IEEE Comput. Graphics Appl. 4, 15-22 (1984).
  35. A. William, S. Barrus, R. Morley, and P. Shirley, "An Efficient and Robust Ray-Box Intersection Algorithm," J. Graph. Tools 10, 49-54 (2005). [CrossRef]
  36. L. Wang, S. Jacques, and L. Zheng, "CONV - convolution for responses to a finite diameter photon beam incident on multi-layered tissues," Comput. Methods Programs Biomed. 54, 141-150 (1997). [CrossRef]
  37. A. Tycho, T. Jørgensen, H. Yura, and P. Andersen, "Derivation of a Monte Carlo method for modeling heterodyne detection in optical Coherence tomography systems," Appl. Opt. 41, 6676-6691 (2002). [CrossRef] [PubMed]
  38. E. Giesen and T. van Eijden, "The three-dimensional cancellous bone architecture of the human mandibular condyle," J. Dent. Res. 79, 957-963 (2000). [CrossRef] [PubMed]
  39. M. Garland and P. Heckbert, "Surface simplification using Quadric Error Metrics," in SIGGRAPH (1997).
  40. M. Firbank, M. Hiraoka, M. Essenpreis, and D. Delpy, "Measurement of the optical properties of the skull in the wavelength range 650-950 nm," Phys. Med. Biol. 38, 503-510 (1993). [CrossRef] [PubMed]
  41. G. Bashkatov, "Optical properties of human skin, subcutaenous and mucous tissues in the wavelength range from 400 to 2000nm," J. Phys. D Appl. Phys. 38, 2543-2555 (2005). [CrossRef]
  42. C. Tsai, Y. Yang, C. Han, J. Hsieh, and M. Chang, "Measurement and simulation of light distribution in biological tissues," Appl. Opt. 40, 5770-5777 (2001). [CrossRef]
  43. R. van Veen, H. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, and R. Cubeddu, "Determination of visible near-IR absorption coefficients of mammalian fat using time and spatially resolved diffuse reflectance and transmission spectroscopy," J. Biomed. Opt. 10, 054004 (2005). [PubMed]
  44. H. Bal, R. Bhoedjang, R. Hofman, C. Jacobs, T. Kielmann, J. Maassen, R. van Nieuwpoort, J. Romein, L. Renambot, T. Ruhl, R. Veldema, K. Verstoep, A. Baggio, G. Ballintijn, I. Kuz, G. Pierre, M. van Steen, A. Tanenbaum, G. Doornbos, D. Germans, H. Spoelder, E.-J. Baerends, S. van Gisbergen, H. Afsermanesh, D. van Albada, A. Belloum, D. Dubbeldam, Z. Hendrikse, B. Hertzberger, A. Hoekstra, K. Iskra, D. Kandhai, D. Koelma, F. van der Linden, B. Overeinder, P. Sloot, P. Spinnato, D. Epema, A. van Gemund, P. Jonker, A. Radulescu, C. van Reeuwijk, H. Sips, P. Knijnenburg, M. Lew, F. Sluiter, L. Wolters, H. Blom, C. de Laat, and A. van der Steen, "The distributed ASCI Supercomputer project," SIGOPS Oper. Syst. Rev. 34, 76-96 (2000). [CrossRef]
  45. M. Pharr, C. Kolb, R. Gershbein and P. Hanrahan, "Rendering Complex Scenes with Memory-Coherent Ray Tracing," in SIGGRAPH ’97: Proceedings of the 24th annual conference on Computer graphics and interactive techniques (ACM Press/Addison-Wesley Publishing Co., 1997), pp. 101-108. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited