OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 21 — Oct. 17, 2007
  • pp: 14099–14106

Electroluminescence of nanopatterned silicon with carbon implantation and solid phase epitaxial regrowth

Efraim Rotem, Jeffrey M. Shainline, and Jimmy M. Xu  »View Author Affiliations


Optics Express, Vol. 15, Issue 21, pp. 14099-14106 (2007)
http://dx.doi.org/10.1364/OE.15.014099


View Full Text Article

Enhanced HTML    Acrobat PDF (775 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Electroluminescence at 1.28μm is observed in a nanopatterned silicon test structure that has been subjected to carbon implantation followed by solid-phase epitaxial regrowth for recrystalization. The sub-bandgap luminescence comes from a di-carbon complex known as ‘G center’. Enrichment of silicon with carbon atoms has been achieved in a procedure consisting of two implantations and solid-phase epitaxial regrowth. Nanopatterning was done using an anodized aluminum oxide membrane as a mask for reactive ion etching. Along with the electroluminescence, an enhanced photoluminescence was measured.

© 2007 Optical Society of America

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(250.5230) Optoelectronics : Photoluminescence

ToC Category:
Optical Devices

History
Original Manuscript: July 25, 2007
Revised Manuscript: September 27, 2007
Manuscript Accepted: September 28, 2007
Published: October 11, 2007

Citation
Efraim Rotem, Jeffrey M. Shainline, and Jimmy M. Xu, "Electroluminescence of nanopatterned silicon with carbon implantation and solid phase epitaxial regrowth," Opt. Express 15, 14099-14106 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-21-14099


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction. (Wiley, Chichester, U.K, 2004). [CrossRef]
  2. L. Pavesi and D. J. Lockwood, Topics in Applied physics. volume 94: Silicon Photonics. (Springer-Verlag Berlin, Germany, 2004).
  3. B. Jalali and S. Fathpour, "Silicon photonics," J. Lightwave Technol. 24, 4600-4610 (2006). [CrossRef]
  4. M. Lipson, "Guiding, modulating, and emitting light on silicon challenges and opportunities," J. Lightwave Technol. 23, 4222-4238 (2005). [CrossRef]
  5. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004). [CrossRef] [PubMed]
  6. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, "High-speed silicon Mach-Zehnder modulator," Opt. Express 13, 3129-3135 (2005). [CrossRef] [PubMed]
  7. L. Naval, B. Jalali, L. Gomelsky, and J. M. Liu, "Optimization of Si1?xGex/Si waveguide photodetectors operating at ? = 1.3 ?m," J. Lightwave Technol. 14, 787-797 (1996). [CrossRef]
  8. L. Colace, G. Masini, and G. Assanto, "Ge-on-Si approach to the detection of near-infrared light," IEEE J. Quantum Electron. 35, 1843-1852 (1999). [CrossRef]
  9. A. Kenyon, "Erbium in silicon," Semicond. Sci. Technol. 20, R65-R84 (2005). [CrossRef]
  10. H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, "1.54-µm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy," Appl. Phys. Lett. 46, 381-383 (1985). [CrossRef]
  11. O. Boyraz and B. Jalali, "Demonstration of a silicon raman laser," Opt. Express 12, 5269-5272 (2005). [CrossRef]
  12. H. S. Rong, Y. H. Kuo, S. B. Xu, A. S. Liu, R. Jones, and M. Paniccia, "A continuous-wave raman silicon laser," Nature 433, 725-728 (2005). [CrossRef] [PubMed]
  13. L. Pavesi, L. D. Negro, C. Mazzoleni, G. Franzo, and F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000). [CrossRef] [PubMed]
  14. F. lacona, A. Irrera, G. Franz, D. Pacifici, I. Crupi, M. P. Miritello, C. D. Presti, and F. Priolo, "Silicon based light emitting devices: properties and applications of crystalline, amorphous and Er-doped nanoclusters," IEEE J. Sel. Top. Quantum Electron. 12, 1596-1606 (2006). [CrossRef]
  15. W. L. Ng, M. A. Lourenco, R. M. Gwilliam, S. Ledain, G. Shao, K. P. Homewood, "An efficient room-temperature silicon-based light-emitting diode," Nature 410, 192-194 (2001). [CrossRef] [PubMed]
  16. J. Bao, M. Tabbal, T. Kim, S. Charnvanichborikarn, J. S. Williams, M. J. Aziz, and F. Capasso, "Point defect engineered Si sub-bandgap light-emitting diode," Opt. Express 15, 6727-6733 (2007). [CrossRef] [PubMed]
  17. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, "Electrically pumped hybrid AlGaInAs-silicon evanescent laser," Opt. Express 14, 9203-9210 (2006). [CrossRef] [PubMed]
  18. S. G. Cloutier, P. A. Kossyrev and J. Xu, "Optical gain and stimulated emission in periodic nanopatterned crystalline silicon," Nature Mater. 4, 887-891, (2005). [CrossRef]
  19. L. W. Song, X. D. Zhan, B. W. Benson, and G. D. Watking, "bistable interstitial-carbon-substitutional-carbon pair in silicon," Phys. Rev. B 42, 5765-5782 (1990). [CrossRef]
  20. S. Cloutier, C.-H. Hsu, P. Kosseyrev, and J. M. Xu, "Radiative recombination enhancement in silicon via phonon localization and selection-rule breaking," Adv. Mater. 18, 841-844 (2006). [CrossRef]
  21. G. Davies, K. Kun, and T. Reade, "Annealing kinetics of the dicarbon radiation-damage center in crystalline silicon," Phys. Rev. B 44, 12146-12157 (1991). [CrossRef]
  22. R. B. Capaz, A. Dal Pino, Jr., and J. D. Joannopoulos, "Theory of carbon-carbon pairs in silicon," Phys. Rev. B 58, 9845-9850 (1998). [CrossRef]
  23. G. Davies, "the optical properties of luminescence centres in silicon," Phys. Rep. 176, 83-188 (1989). [CrossRef]
  24. G. Davies, H. Brian, E. Lightowlers, K. Barraclough, and M. Thomaz, "The temperature dependence of the 969 meV ‘G’ optical transition in silicon," Semicond. Sci. Technol. 4, 200-206 (1989). [CrossRef]
  25. M. Potsidi and C. Londos, "The CiCs(Si-i) defect in silicon: An infrared spectroscopy study," J. Appl. Phys. 100, 033523-033523-4 (2006). [CrossRef]
  26. G Davies, E C Lightowlers and M. do Carmo, "Carbon-related vibronic bands in electron-irradiated silicon," J. Phys. C 16, 5503-5515 (1983). [CrossRef]
  27. E. Lavrov, L. Hoffmann, and B. B. Nielsen, "Local vibrational modes of the metastable dicarbon center (CsCi) in silicon," Phys. Rev. B 60, 8081-8086, (1999). [CrossRef]
  28. A. Dolgolenko, M. Varentsov, and G. Gaidar, "Energy level position of bistable CiCs defect in the B configuration in the forbidden band of n-Si," Physica Status Solidi B 241, 2914-2922 (2004). [CrossRef]
  29. P. N. K. Deenapanray, N. E. Perret, D. J. Brink, F. D. Auret, and J. B. Malherbe, "Characterization of optically active defects created by noble gas ion bombardment of silicon," J. Appl. Phys. 83, 4075-4080 (1998). [CrossRef]
  30. J. Weber, R. J. Davis, H. U. Habermeier, W. D. Sawyer, and M. Singh, "Photoluminescene detection of impurities introduced in silicon by dry etching processes," Appl. Phys. A 41, 175-178 (1986). [CrossRef]
  31. L. Canham, K. Barraclough, and D. Robbins, "1.3µm light-emitting diode from silicon electron irradiated at its damage threshold," Appl. Phys. Lett. 51, 1509-1511 (1987). [CrossRef]
  32. S. U. Campisano, G. Foti, P. Baeri, M. G. Grimaldi, and E. Rimini, "Solute trapping by moving interface in ion-implanted silicon," Appl. Phys. Lett. 37, 719-722 (1980). [CrossRef]
  33. J. W. Strane, S. R. Lee, H. J. Stein, S. T. Picraux, J. K. Watanabe, and J. W. Mayer, "Carbon incorporation into Si at high concentrations by ion implantation and solid phase epitaxy," J. Appl. Phys. 79, 637-645 (1996). [CrossRef]
  34. J. Liang, H. Chik, A. Yin, and J. Xu, "Two-dimensional lateral superlattices of nanostructures: Nonlithographic: Formation by anodic membrane template," J. Appl. Phys. 91, 2544-2564 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited