OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 21 — Oct. 17, 2007
  • pp: 14219–14227

Negative beam displacements from negative-index photonic metamaterials

G. Dolling, M.W. Klein, M. Wegener, A. Schädle, B. Kettner, S. Burger, and S. Linden  »View Author Affiliations

Optics Express, Vol. 15, Issue 21, pp. 14219-14227 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (212 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It is well known that refraction of light at interfaces leads to a beam displacement for oblique incidence of light onto a slab of material. In ray optics and for homogeneous isotropic materials, the sign of this beam displacement is strictly identical to the sign of the refractive index. Our numerical calculations reveal negative beam displacements from state-of-the-art double-fishnet-type photonic metamaterials. This holds true for the “main” polarization corresponding to a negative phase velocity for normal incidence as well as for the “secondary” polarization with positive phase velocity. To understand and interpret these results, we also present exact analytical calculations for thin metal films showing that, in wave optics, the sign of the beam displacement (i.e., the sign of refraction) is generally not identical to the sign of the refractive index.

© 2007 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(260.5740) Physical optics : Resonance

ToC Category:

Original Manuscript: July 27, 2007
Revised Manuscript: September 14, 2007
Manuscript Accepted: September 18, 2007
Published: October 12, 2007

G. Dolling, M. W. Klein, M. Wegener, Achim Schädle, Benjamin Kettner, Sven Burger, and Stefan Linden, "Negative beam displacements from negative-index photonic metamaterials," Opt. Express 15, 14219-14227 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, "The electrodynamics of substances with simultaneuously negative values of ? and ?," Sov. Phys. Uspekhi 10, 509-514 (1968). [CrossRef]
  2. V. M. Shalaev, "Optical negative-index metamaterials," Nature Photon. 1, 41-48 (2006).Q1 [CrossRef]
  3. C. M. Soukoulis, S. Linden, and M. Wegener, "Negative Refractive Index at Optical Wavelengths," Science 315, 47-49 (2007). [CrossRef] [PubMed]
  4. K. Busch, G. von Freymann, S. Linden, S. Mingaleev, L. Tkeshelashvili, and M. Wegener, "Periodic nanostructures for photonics," Phys. Rep. 444, 101-202 (2007). [CrossRef]
  5. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental Verfication of a Negative Index of Refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  6. G. Dolling, M. Wegener, and S. Linden, "Realization of a three-functional-layer negative-index photonic metamaterial," Opt. Lett. 32, 551-553 (2007). [CrossRef] [PubMed]
  7. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial," Science 312, 892-894 (2006). [CrossRef] [PubMed]
  8. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Opt. Lett. 31, 1800-1802 (2006). [CrossRef] [PubMed]
  9. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780 nm wavelength," Opt. Lett. 32, 53-55 (2007). [CrossRef]
  10. X. L. Chen, M. He, Y. Du, W. Y. Wang, and D. F. Zhang, "Negative refraction: An intrinsic property of uniaxial crystals," Phys. Rev. B 72, 113111 (2005). [CrossRef]
  11. E. Shamonina and L. Solymar, "Properties of magnetically coupled metamaterial elements," J. Magn. Magn. Mater. 300, 38-43 (2006). [CrossRef]
  12. G. Dolling, M. Wegener, A. Sch¨adle, S. Burger, and S. Linden, "Observation of magnetization waves in negativeindex photonic metamaterials," Appl. Phys. Lett. 89, 231118 (2006). [CrossRef]
  13. F. Goos and H. H¨anchen, "Ein neuer und fundamentaler Versuch zur Totalreflexion," Ann. Physik 1, 333-346 (1947). [CrossRef]
  14. F. Goos and H. H¨anchen, "Neumessung des Strahlversetzungseffektes bei Totalreflexion," Ann. Physik 5, 251- 252 (1949). [CrossRef]
  15. H. M. Lai, C. W. Kwok, Y. W. Loo, and B. Y. Xu, "Energy-flux pattern in the Goos-H¨anchen effect," Phys. Rev. E 62, 7330-7339 (2000). [CrossRef]
  16. S. Zhang, W. Fan, K. J. Malloy, S. R. Brueck, N. C. Panoiu, and R. M. Osgood, "Near-infrared double negative metamaterials," Opt. Express 13, 4922-4930 (2005). [CrossRef] [PubMed]
  17. S. Burger, R. Klose, A. Sch¨adle, F. Schmidt, and L. Zschiedrich, "FEM modelling of 3D photonic crystals and photonic crystal waveguides," Proc. SPIE Vol. 5728, 164-173 (2005). [CrossRef]
  18. L. Zschiedrich, R. Klose, A. Sch¨adle, and F. Schmidt, "A new finite element realization of the Perfectly Matched Layer Method for Helmholtz scattering problems on polygonal domains in 2D," J. Comput Appl. Math. 188, 12-32 (2006). [CrossRef]
  19. L. Zschiedrich, S. Burger, B. Kettner, and F. Schmidt, "Advanced Finite Element Method for Nano-Resonators," Proc. SPIE Vol. 6115, 164-174 (2006).
  20. P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  21. E. Hecht, Optics (Addison Wesley, 2001).
  22. J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  23. M. Wegener, G. Dolling, and S. Linden, "Backward waves moving forward," Nature Mater. 6, 475-476 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited