OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 22 — Oct. 29, 2007
  • pp: 14673–14678

Reflection and emission properties of an infrared emitter

Chih-Ming Wang, Yia-Chung Chang, Ming-Wei Tsai, Yi-Han Ye, Chia-Yi Chen, Yu-Wei Jiang, Yi-Tsung Chang, Si-Chen Lee, and Din Ping Tsai  »View Author Affiliations


Optics Express, Vol. 15, Issue 22, pp. 14673-14678 (2007)
http://dx.doi.org/10.1364/OE.15.014673


View Full Text Article

Enhanced HTML    Acrobat PDF (219 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The reflection and emission properties of an infrared emitter, which is a plasmonic multilayer structure consisting of a relief metallic grating, a waveguide layer, and a metallic substrate are investigated both experimentally and theoretically. A localized surface plasmon polariton (SPP) mode which is angular-independent in almost the full range of incident angles is observed. The thermal emission of this structure is also measured. It is found that the emission peak coincides with the angular-independent localized SPP mode. In addition, the emission spectrum of the plasmonic emitter can be predicted by investigating the reflectance spectrum.

© 2007 Optical Society of America

OCIS Codes
(260.3060) Physical optics : Infrared
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: August 15, 2007
Revised Manuscript: October 15, 2007
Manuscript Accepted: October 15, 2007
Published: October 23, 2007

Citation
Chih-Ming Wang, Yia-Chung Chang, Ming-Wei Tsai, Yi-Han Ye, Chia-Yi Chen, Yu-Wei Jiang, Yi-Tsung Chang, Si-Chen Lee, and Din Ping Tsai, "Reflection and emission properties of an infrared emitter," Opt. Express 15, 14673-14678 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-22-14673


Sort:  Year  |  Journal  |  Reset  

References

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  2. X. Luo and T. Ishihara, "Surface plasmon resonant interference nanolithography technique," Appl. Phys. Lett. 84, 4780-4782 (2004). [CrossRef]
  3. L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, "Near-Field distribution of Optical Transmission of Periodic Subwavelength Holes in a Metal Film," Phys. Rev. Lett. 86, 1110-1113 (2001). [CrossRef] [PubMed]
  4. J. Hashizume and F. Koyama, "Plasmon Enhanced Optical Near-field probing of Metal Nanoaperture Surface Emitting Laser," Opt. Express. 12, 6391-6396 (2004). [CrossRef] [PubMed]
  5. W. L. Barnes, "Fluorescence near interfaces: the role of photonic mode density," J. Mod. Opt. 45, 661-699 (1998). [CrossRef]
  6. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mater. 3, 601-605 (2004). [CrossRef] [PubMed]
  7. S. A. Darmanyan and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study," Phys. Rev. B 67, 035424-1-7 (2003). [CrossRef]
  8. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays," Phys. Rev. Lett. 86, 1114-1117 (2001). [CrossRef] [PubMed]
  9. A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations," Phys. Rev. B. 74, 155435-1-8 (2006). [CrossRef]
  10. M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, and S. C. Lee, "High performance midinfrared narrow-band plasmonic thermal emitter," Appl. Phys. Lett. 89, 173116-173118 (2006). [CrossRef]
  11. T. H. Chuang, M. W. Tsai, Y. T. Chang, and S. C. Lee, "Remotely coupled surface plasmons in a two-colored plasmonic thermal emitter," Appl. Phys. Lett. 89, 173128-173130 (2006). [CrossRef]
  12. M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, "Photonic crystal enhanced narrow-band infrared emitters," Appl. Phys. Lett. 81, 4685-4687 (2002). [CrossRef]
  13. I. El-Kady, R. Biswas, Y. Ye, M. F. Su, I. Puscasu, M. Pralle, E. A. Johnson, J. Daly, and A. Greenwald, Photonics Nanostruct. Fundam. Appl. 1, 69-71 (2003). [CrossRef]
  14. I. Puscasu, M. Pralle, M. McNeal, J. Daly, A. Greenwald, E. Johnson, R. Biswas, and C. G. Ding, "Extraordinary emission from two-dimensional plasmonic-photonic crystals," J. Appl. Phys. 98, 013531-1-6 (2005). [CrossRef]
  15. S. Y. Lin, J. Moreno, and J. G. Fleming, "A 3D Photonic-Crystal Emitter for Thermal Photovoltaic Generation," Appl. Phys. Lett. 83, 380-382 (2003). [CrossRef]
  16. S. Y. Lin, J. G. Fleming, and I. El-Kady, "Experimental observation of photonic-crystal emission near a photonic band edge," Appl. Phys. Lett. 83, 593-595 (2003). [CrossRef]
  17. P. Ben-Abdallah and B. Ni, "Single-defect Bragg stacks for high-power narrow-band thermal emission," J. Appl. Phys. 97, 104910-1-5 (2005). [CrossRef]
  18. I. Celanovic, D. Perreault, and J. Kassakian, "Resonant-cavity enhanced thermal emission," Phys. Rev. B 72, 075127-1-6 (2005). [CrossRef]
  19. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Boston, 1985).
  20. M.G. Moharam, E.B. Grann, D.A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1068-1076 (1995); "Stable implementation of the rigorous coupled-wave analysis of surface-relief gratings: enhance transmittance matrix approach," J. Opt. Soc. Am. A 12, 1077-1086 (1995). [CrossRef]
  21. J. J. Greffet and M. Nieto-Vesperinas, "Field theory for generalized bidirectional reflectivity: derivation of Helmholtz’s reciprocity principle and Kirchhoff’s law," J. Opt. Soc. Am. A 15, 2735-2744 (1998). [CrossRef]
  22. R. Siegel and J. Howell, Thermal Radiation Heat Transfer (Hemisphere Publishing Corporation, New York 1981).
  23. M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher and W. Knoll, "Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons," Opt. Commun. 168, 117 - 122 (1999). [CrossRef]
  24. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy and Y. Chen, "Coherent emission of light by thermal sources," Nature 416, 61-64 (2002). [CrossRef] [PubMed]
  25. F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, and Y. Chen, "Coherent spontaneous emission of light by thermal sources," Phys. Rev. B 69, 155412-1-11 (2004). [CrossRef]
  26. M. Laroche, C. Arnold, F. Marquier, R. Carminati, J. J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, "Highly directional radiation generated by a tungsten thermal source," Opt. Lett. 30, 2623-2625 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited