OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 22 — Oct. 29, 2007
  • pp: 14921–14935

Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser

Sze-Chun Chan, Sheng-Kwang Hwang, and Jia-Ming Liu  »View Author Affiliations


Optics Express, Vol. 15, Issue 22, pp. 14921-14935 (2007)
http://dx.doi.org/10.1364/OE.15.014921


View Full Text Article

Enhanced HTML    Acrobat PDF (3009 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optically injected semiconductor laser under period-one oscillation is investigated as a source for photonic microwave transmission over fiber. The period-one nonlinear dynamics of an optically injected laser is studied for the purpose of minimizing the microwave power penalty induced by chromatic dispersion. Over a large range of injection strengths and frequency detunings, we first obtain the mapping of the period-one oscillation characteristics, including the microwave frequency, the microwave power, and the single sideband (SSB) characteristics of the optical spectrum. By accounting for the fiber chromatic dispersion, we calculate its effect on the optical spectrum and the associated microwave power penalty. A mapping of the minimum microwave power deliverable after the maximum penalty is obtained. The system is shown to be least susceptible to the penalty when operated under strong injection with the frequency detuned above the Hopf bifurcation line. Microwave frequency beyond six times the relaxation resonance frequency can be effectively transmitted.

© 2007 Optical Society of America

OCIS Codes
(140.3520) Lasers and laser optics : Lasers, injection-locked
(140.5960) Lasers and laser optics : Semiconductor lasers
(350.4010) Other areas of optics : Microwaves

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: May 21, 2007
Revised Manuscript: October 21, 2007
Manuscript Accepted: October 22, 2007
Published: October 26, 2007

Citation
Sze-Chun Chan, Sheng-Kwang Hwang, and Jia-Ming Liu, "Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser," Opt. Express 15, 14921-14935 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-22-14921


Sort:  Year  |  Journal  |  Reset  

References

  1. A. J. Seeds, "Microwave photonics," IEEE Trans. Microwave Theory Tech. 50, 877-887 (2002). [CrossRef]
  2. N. Dagli, "Wide-bandwidth lasers and modulators for RF photonics," IEEE Trans. Microwave Theory Tech. 47, 1151-1171 (1999). [CrossRef]
  3. A. Kaszubowska, P. Anandarajah, and L. P. Barry, "Multifunctional operation of a. ber Bragg grating in a WDM/SCM radio over. ber distribution system," IEEE Photon. Technol. Lett. 16, 605-607 (2004). [CrossRef]
  4. C. Lim, A. Nirmalathas, D. Novak, R. Waterhouse, and G. Yo.e, "Millimeter-wave broad-band. ber-wireless system incorporating baseband data transmission over. ber and remote LO delivery," J. Lightwave Technol. 18, 1355-1363 (2000). [CrossRef]
  5. D. Novak, G. H. Smith, A. J. Lowery, H. F. Liu, and R. B. Waterhouse, "Millimetre-wave. brewireless transmission systems with reduced e.ects of. bre chromatic dispersion," Opt. Quantum Electron. 30, 1021-1031 (1998). [CrossRef]
  6. C. Lim, D. Novak, A. Nirmalathas, and G. H. Smith, "Dispersion-induced power penalties in millimeter-wave signal transmission using multisection DBR semiconductor laser," IEEE Trans. Microwave Theory Tech. 49, 288-296 (2001). [CrossRef]
  7. G. H. Smith, D. Novak, and Z. Ahmed, "Overcoming chromatic-dispersion e.ects in. ber-wireless systems incorporating external modulators," IEEE Trans. Microwave Theory Tech. 45, 1410-1415 (1997). [CrossRef]
  8. U. Gliese, "Multi-functional. bre-optic microwave links," Opt. Quantum Electron. 30, 1005-1019 (1998). [CrossRef]
  9. L. A. Johansson and A. J. Seeds, "Generation and transmission of millimeter-wave datamodulated optical signals using an optical injection phase-lock loop," J. Lightwave Technol. 21, 511-520 (2003). [CrossRef]
  10. M. Hyodo, K. S. Abedin, and N. Onodera, "Generation of millimeter-wave signals up to 70.5 GHz by heterodyning of two extended-cavity semiconductor lasers with an intracavity electro-optic crystal," Opt. Commun. 171, 159-169 (1999). [CrossRef]
  11. J. Han, B. J. Seo, Y. Han, B. Jalali, and H. R. Fetterman, "Reduction of. ber chromatic dispersion e.ects in. ber-wireless and photonic time-stretching system using polymer modulators," J. Lightwave Technol. 21, 1504-1509 (2003). [CrossRef]
  12. D. Wake, C. R. Lima, and P. A. Davies, "Transmission of 60-GHz signals over 100 km of optical. ber using a dual-mode semiconductor laser source," IEEE Photon. Technol. Lett. 8, 578-580 (1996). [CrossRef]
  13. K. Sato, "Semiconductor light sources for 40-Gb/s transmission systems," J. Lightwave Technol. 20, 2035-2043 (2002). [CrossRef]
  14. K. S. Lee and C. Shu, "Stable and widely tunable dual-wavelength continuous-wave operation of a semiconductor laser in a novel Fabry-Perot grating-lens external cavity," IEEE J. Quantum Electron. 33, 1832-1838 (1997). [CrossRef]
  15. K. E. Razavi and P. A. Davies, "Semiconductor laser sources for the generation of millimetre-wave signals," IEE Proc. Optoelectron. 145, 159-163 (1998).Q1 [CrossRef]
  16. H. S. Ryu, Y. K. Seo, and W. Y. Choi, "Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode," IEEE Photon. Technol. Lett. 16, 1942-1944 (2004). [CrossRef]
  17. S. C. Chan, S. K. Hwang, and J. M. Liu, "Radio-over-.ber AM-to-FM upconversion using an optically injected semiconductor laser," Opt. Lett. 31, 2254-2256 (2006). [CrossRef] [PubMed]
  18. S. C. Chan, S. K. Hwang, and J. M. Liu, "Radio-over-.ber transmission from an optically injected semiconductor laser in period-one state," SPIE 6468, 646811 (2007).Q2 [CrossRef]
  19. S. K. Hwang, J. M. Liu, and J. K. White, "Characteristics of period-one oscillations in semiconductor lasers subject to optical injection," IEEE J. Sel. Top. Quantum Electron. 10, 974-981 (2004).Q3 [CrossRef]
  20. S. C. Chan and J. M. Liu, "Frequency modulation on single sideband using controlled dynamics of an optically injected semiconductor laser," IEEE J. Quantum Electron. 42, 699-705 (2006). [CrossRef]
  21. T. B. Simpson and F. Doft, "Double-locked laser diode for microwave photonics applications," IEEE Photon. Technol. Lett. 11, 1476-1478 (1999). [CrossRef]
  22. T. B. Simpson, "Phase-locked microwave-frequency modulations in optically-injected laser diodes," Opt. Commun. 170, 93-98 (1999). [CrossRef]
  23. S. C. Chan and J. M. Liu, "Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics," IEEE J. Sel. Top. Quantum Electron. 10, 1025-1032 (2004).Q4 [CrossRef]
  24. A. Kaszubowska, L. P. Barry, and P. Anandarajah, "E.ects of intermodulation distortion on the performance of a hybrid radio/.ber system employing a self-pulsating laser diode transmitter," IEEE Photon. Technol. Lett. 15, 852-854 (2003). [CrossRef]
  25. A. Kaszubowska, L. P. Barry, and P. Anandarajah, "Multiple RF carrier distribution in a hybrid radio/.ber system employing a self-pulsating laser diode transmitter," IEEE Photon. Technol. Lett. 14, 1599-1601 (2002). [CrossRef]
  26. L. No¨el, D. Wake, D. G. Moodie, D. D. Marcenac, L. D. Westbrook, and D. Nesset, "Novel techniques for high-capacity 60-GHz. ber-radio transmission systems," IEEE Trans. Microwave Theory Tech. 45, 1416-1423 (1997).Q5 [CrossRef]
  27. P. Saboureau, J. P. Foing, and P. Schanne, "Injection-locked semiconductor lasers with delayed optoelectronic feedback," IEEE J. Quantum Electron. 33, 1582-1591 (1997). [CrossRef]
  28. T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, "Nonlinear dynamics induced by external optical injection in semiconductor lasers," Quantum Semiclass. Opt. 9, 765-784 (1997).Q6 [CrossRef]
  29. T. B. Simpson, J. M. Liu, and A. Gavrielides, "Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection," IEEE J. Quantum Electron. 32, 1456-1468 (1996). [CrossRef]
  30. J. M. Liu, Photonic Devices. Cambridge (2005).
  31. S. K. Hwang, J. M. Liu, and J. K. White, "35-GHz intrinsic bandwidth for direct modulation in 1.3-µm semiconductor lasers subject to strong injection locking," IEEE Photon. Technol. Lett. 16, 972-974 (2004). [CrossRef]
  32. T. B. Simpson, "Mapping the nonlinear dynamics of a distributed feedback semiconductor laser subject to external optical injection," Opt. Commun. 215, 135-151 (2003). [CrossRef]
  33. A. Gavrielides, V. Kovanis, and T. Erneux, "Analytical stability boundaries for a semiconductor laser subject to optical injection," Opt. Commun. 136, 253-256 (1997). [CrossRef]
  34. T. B. Simpson and J. M. Liu, "Phase and amplitude characteristics of nearly degenerate four-wave mixing in Fabry-Perot semiconductor lasers," J. Appl. Phys. 73, 2587-2589 (1993). [CrossRef]
  35. A. Murakami, K. Kawashima, and K. Atsuki, "Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection," IEEE J. Quantum Electron. 39, 1196-1204 (2003). [CrossRef]
  36. S. K. Hwang and D. H. Liang, "E.ects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers," Appl. Phys. Lett. 89, 061120 (2006). [CrossRef]
  37. W. A. van der Graaf, A. M. Levine, and D. Lenstra, "Diode lasers locked to noisy injection," IEEE J. Quantum Electron. 33, 434-442 (1997). [CrossRef]
  38. S. K. Hwang and J. M. Liu, "Dynamical characteristics of an optically injected semiconductor laser," Opt. Commun. 183, 195-205 (2000). [CrossRef]
  39. S. Wieczorek, B. Krauskopf, and D. Lenstra, "A unifying view of bifurcations in a semiconductor laser subject to optical injection," Opt. Commun. 172, 279-295 (1999). [CrossRef]
  40. T. Erneux, V. Kovanis, A. Gavrielides, and P. M. Alsing, "Mechanism for period-doubling bifurcation in a semiconductor laser subject to optical injection," Phys. Rev. A. 53, 4372-4380 (1996). [CrossRef] [PubMed]
  41. H. S. Ryu, Y. K. Seo, and W. Y. Choi, "Optical single sideband modulation using an injectionlocked semiconductor laser as an optical. lter," Intl. Topical Meeting on Microwave Photonics, 223-226 (2003).
  42. S. C. Chan and J. M. Liu, "Microwave frequency division and multiplication using an optically injected semiconductor laser," IEEE J. Quantum Electron. 41, 1142-1147 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited