OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 23 — Nov. 12, 2007
  • pp: 15093–15100

Chromatic discrimination by use of computer controlled set of light-emitting diodes

Alexei A. Kamshilin and Ervin Nippolainen  »View Author Affiliations


Optics Express, Vol. 15, Issue 23, pp. 15093-15100 (2007)
http://dx.doi.org/10.1364/OE.15.015093


View Full Text Article

Enhanced HTML    Acrobat PDF (190 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a novel approach for measurements of two-dimensional distribution of the reflection spectra with high spatial resolution. It is based on a subspace vector model of surface reflections and includes sequential illumination of the object by basis functions preliminary calculated with principal component analysis. A simple optical system consisting of a computer controlled set of light-emitting diodes and a photo-receiver operating in integration regime is used to acquire spatial distribution of reflection spectra in compressed form. The compressed data can be directly used for accurate color classification or recognition. The system’s ability to distinguish metameric samples with extremely small hue difference is experimentally demonstrated.

© 2007 Optical Society of America

OCIS Codes
(100.5010) Image processing : Pattern recognition
(330.1710) Vision, color, and visual optics : Color, measurement
(330.6180) Vision, color, and visual optics : Spectral discrimination

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: July 16, 2007
Revised Manuscript: October 16, 2007
Manuscript Accepted: October 22, 2007
Published: October 31, 2007

Virtual Issues
Vol. 2, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Alexei A. Kamshilin and Ervin Nippolainen, "Chromatic discrimination by use of computer controlled set of light-emitting diodes," Opt. Express 15, 15093-15100 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-23-15093


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Warde, H. J. Caulfield, F. T. S. Yu, and J. E. Ludman, "Real-time joint spectral-spatial matched filtering," Opt. Commun. 49, 241-244 (1984). [CrossRef]
  2. E. Badiqué, Y. Komiya, N. Ohyama, J. Tsujiuchi, and T. Honda, "Color Image correlation," Opt. Commun. 61, 181-186 (1987). [CrossRef]
  3. Z. Q. Wang, C. M. Cartwright, C. Soutar, and W. A. Gillespie, "Real-time color image correlation with a color liquid-crystal television and a Fresnel holographic filter," Appl. Opt. 32, 715-717 (1993). [CrossRef] [PubMed]
  4. M. S. Millán, M. Corbalán, J. Romero, and M. J. Yzuel, "Optical pattern recognition based on color vision model," Opt. Lett. 20, 1722-1724 (1995). [CrossRef] [PubMed]
  5. A. Fares, P. García-Martínez, C. Ferreira, M. Hamdi, and A. Bouzid, "Multi-channel chromatic transformations for nonlinear color pattern recognition," Opt. Commun. 203, 255-261 (2002). [CrossRef]
  6. J. Nicolás, C. Iemmi, J. Campos, and M. J. Yzuel, "Encoding 3D correlation in an optical processor," Opt. Commun. 256, 279-287 (2005). [CrossRef]
  7. M. D'Zmura and G. Iversion, "Color constancy. I. Basic theory of two-stage linear recovery of spectral descriptions for lights and surfaces," J. Opt. Soc. Am. A 10, 2148-2165 (1993). [CrossRef]
  8. B. V. Funt and G. D. Finlayson, "Color constant color indexing," IEEE Trans. Pattern Anal. Mach. Intell. 17, 522-529 (1995). [CrossRef]
  9. G. D. Finlayson, S. D. Hordley, and P. M. Hubel, "Color by correlation: a simple, unifying framework for color constancy," IEEE Trans. Pattern Anal. Mach. Intell. 23, 1209-1221 (2001). [CrossRef]
  10. M. Corbalán, M. S. Millán, and M. J. Yzuel, "Color pattern recognition with CIELAB coordinates," Opt. Eng. 41, 130-138 (2002). [CrossRef]
  11. G. D. Finlayson and P. Morovic, "Metamer sets," J. Opt. Soc. Am. A 22, 810-819 (2005). [CrossRef]
  12. http://www.specim.fi/products/spetral-imaging-products/imaging-spectrographs.html.
  13. J. Y. Hardeberg, F. Schmitt, and H. Brettel, "Multispectral color image capture using a liquid crystal tunable filter," Opt. Eng. 41, 2532-2548 (2002). [CrossRef]
  14. S. Tominaga, "Multichannel vision system for estimating surface and illumination functions," J. Opt. Soc. Am. A 13, 2163-2173 (1996). [CrossRef]
  15. S. Baronti, F. Casini, F. Lotti, and S. Porcinai, "Multispectral imaging system for the mapping of pigments in works of art by use of principal-component analysis," Appl. Opt. 37, 1299-1309 (1998). [CrossRef]
  16. N. Tsumura, "Appearance reproduction and multispectral imaging," Color Res. Appl. 31, 270-277 (2006). [CrossRef]
  17. D.-Y. Ng and J. P. Allebach, "A subspace matching color filter design methodology for a multispectral imaging system," IEEE Trans. Image Process. 15, 2631-2643 (2006). [CrossRef] [PubMed]
  18. R. S. Berns, L. A. Taplin, M. Nezamabadi, and Y. Zhao, "Methods of spectral reflectance reconstruction for a sinarback 54 digital camera," in Munsell Color Science Lab Technical Report (2004).
  19. H. Haneishi, T. Hasegawa, A. Hosoi, Y. Yokoyama, N. Tsumura, and Y. Miyake, "System design for accurately estimating the spectral reflectance of art paintings," Appl. Opt. 39, 6621-6632 (2000). [CrossRef]
  20. M. Hauta-Kasari, K. Miyazawa, S. Toyooka, and J. P. S. Parkkinen, "Spectral vision system for measuring color images," J. Opt. Soc. Am. A 16, 2352-2362 (1999). [CrossRef]
  21. J. Calpe-Maravilla, J. Vila-Frances, E. Ribes-Gomez, V. Duran-Bosch, J. Munoz-Mari, J. Amoros-Lopez, L. Gomez-Chova, and E. Tajahuerce-Romera, "400-to 1000-nm imaging spectrometer based on acousto-optic tunable filters," J. Electron. Imaging 15, 023001 (2006). [CrossRef]
  22. S. M. Nascimento, F. P. Ferreira, and D. H. Foster, "Statistics of spatial cone-excitation ratios in natural scenes," J. Opt. Soc. Am. A 19,1484-1490 (2002). [CrossRef]
  23. V. Cheung, S. Westland, C. Li, J. Y. Hardeberg, and D. Connah, "Characterization of trichromatic color cameras by using a new multispectral imaging technique," J. Opt. Soc. Am. A 22, 1231-1240 (2005). [CrossRef]
  24. L. T. Maloney and B. A. Wandell, "Color constancy: a method for recovering surface spectral reflectance," J. Opt. Soc. Am. A 3, 29-33 (1986). [CrossRef] [PubMed]
  25. J. P. Parkkinen, J. Hallikainen, and T. Jaaskelainen, "Characteristic spectra of Munsell colors," J. Opt. Soc. Am. A 6, 318-322 (1989). [CrossRef]
  26. L. T. Maloney, "Evaluation of linear models of surface spectral reflectance with small number of parameters," J. Opt. Soc. Am. A 3,1673-1683 (1986). [CrossRef] [PubMed]
  27. T. Jaaskelainen, J. P. S. Parkkinen, and S. Toyooka, "Vector-subspace model for color representation," J. Opt. Soc. Am. A 7, 725-730 (1990). [CrossRef]
  28. M. J. Vrhel, R. Gershon, and L. S. Iwan, "Measurements and analysis of object reflectance spectra," Color Res. Appl. 19, 4-9 (1994).
  29. N. Hayasaka, S. Toyooka, and T. Jaaskelainen, "Iterative feedback method to make a spatial filter on a liquid crystal spatial light modulator for 2D spectroscopic pattern recognition," Opt. Commun. 119, 643-651 (1995). [CrossRef]
  30. J. L. Nieves, J. Hernández-Andrés, E. Valero, and J. Romero, "Spectral-reflectance linear models for optical color-pattern recognition," Appl. Opt. 43, 1880-1891 (2004). [CrossRef] [PubMed]
  31. R. Piché, "Nonnegative color spectrum analysis filters from principal component analysis characteristic spectra," J. Opt. Soc. Am. A 19,1946-1950 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited