OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 24 — Nov. 26, 2007
  • pp: 15722–15733

The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing

Menghua Wang and Wei Shi  »View Author Affiliations


Optics Express, Vol. 15, Issue 24, pp. 15722-15733 (2007)
http://dx.doi.org/10.1364/OE.15.015722


View Full Text Article

Enhanced HTML    Acrobat PDF (6791 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method of ocean color data processing using the combined near-infrared (NIR) and shortwave infrared (SWIR) bands for atmospheric correction for the Moderate Resolution Imaging Spectroradiometer (MODIS) on Aqua is proposed. MODIS-Aqua has been producing the high quality ocean color products in the open oceans, but there are still some significant errors in the derived products in the coastal regions. With the proposed NIR-SWIR combined algorithm, MODIS ocean color data can be processed using the standard (NIR) atmospheric correction algorithm for the open oceans, whereas for the turbid waters in the coastal region the SWIR atmospheric correction algorithm can be executed. The turbid water index developed by Shi and Wang (2007) (Remote Sens. Environ. 110, 149–161 (2007)) is computed prior to the atmospheric correction for the identification of the productive and/or turbid waters where the SWIR algorithm can be operated. For non-turbid ocean waters (discriminated using the turbid water index criterion), the MODIS data are still processed using the standard (NIR) algorithm. The NIR-SWIR combined algorithm has been tested and evaluated. Two examples from MODIS-Aqua measurements along the U.S. and China east coast regions show improved ocean color products with the new approach. In particular, there are no obvious data discontinuities between using the NIR and SWIR methods. Therefore, with the NIR-SWIR combined approach for the MODIS ocean color data processing, good quality ocean color products can be derived both in clear (open) oceans as well as for turbid coastal waters.

© 2007 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.1285) Atmospheric and oceanic optics : Atmospheric correction

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: September 14, 2007
Revised Manuscript: November 6, 2007
Manuscript Accepted: November 6, 2007
Published: November 12, 2007

Virtual Issues
Vol. 2, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Menghua Wang and Wei Shi, "The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing," Opt. Express 15, 15722-15733 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-24-15722


Sort:  Year  |  Journal  |  Reset  

References

  1. C. R. McClain, G. C. Feldman, and S. B. Hooker, "An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series," Deep-Sea Research Part II-Topical Studies in Oceanography 51, 5-42 (2004). [CrossRef]
  2. W. E. Esaias, M. R. Abbott, I. Barton, O. B. Brown, J. W. Campbell, K. L. Carder, D. K. Clark, R. L. Evans, F. E. Hodge, H. R. Gordon, W. P. Balch, R. Letelier, and P. J. Minnet, "An overview of MODIS capabilities for ocean science observations," IEEE Trans. Geosci. Remote Sens. 36, 1250-1265 (1998). [CrossRef]
  3. H. R. Gordon, and M. Wang, "Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm," Appl. Opt. 33, 443-452 (1994). [CrossRef] [PubMed]
  4. H. R. Gordon, "Atmospheric correction of ocean color imagery in the Earth Observing System era," J. Geophys. Res. 102, 17,081-17,106 (1997). [CrossRef]
  5. S. W. Bailey, and P. J. Werdell, "A multi-sensor approach for the on-orbit validation of ocean color satellite data products," Remote Sens. Environ. 102, 12-23 (2006). [CrossRef]
  6. M. Wang, K. D. Knobelspiesse, and C. R. McClain, "Study of the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with the ocean color products," J. Geophys. Res. 110, D10S06, doi:10.1029/2004JD004950 (2005). [CrossRef]
  7. S. J. Lavender, M. H. Pinkerton, G. F. Moore, J. Aiken, and D. Blondeau-Patissier, "Modification to the atmospheric correction of SeaWiFS ocean color images over turbid waters," Continental Shelf Research 25, 539-555 (2005). [CrossRef]
  8. K. G. Ruddick, F. Ovidio, and M. Rijkeboer, "Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters," Appl. Opt. 39, 897-912 (2000). [CrossRef]
  9. D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, "Atmospheric correction of satellite ocean color imagery: the black pixel assumption," Appl. Opt. 39, 3582-3591 (2000). [CrossRef]
  10. M. Wang, and W. Shi, "Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies," Geophy. Res. Lett. 32, L13606, doi:13610.11029/12005GL022917 (2005). [CrossRef]
  11. R. P. Stumpf, R. A. Arnone, R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, "A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters," NASA Tech. Memo. 2003-206892, S. B. Hooker and E. R. Firestone, eds. (NASA Goddard Space Flight Center, Greenbelt, Maryland, 2003), Vol. 22, pp. 51-59.
  12. M. Wang, "Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations," Appl. Opt. 46, 1535-1547 (2007). [CrossRef] [PubMed]
  13. M. Wang, J. Tang, and W. Shi, "MODIS-derived ocean color products along the China east coastal region," Geophy. Res. Lett. 34, L06611, doi:06610.01029/02006GL028599 (2007). [CrossRef]
  14. K. D. Knobelspiesse, C. Pietras, G. S. Fargion, M. Wang, R. Frouin, M. A. Miller, A. Subramaniam, and W. M. Balch, "Maritime aerosol optical properties measured by handheld sun photometers," Remote Sens. Environ. 93, 87-106 (2004). [CrossRef]
  15. A. Smirnov, B. N. Holben, Y. J. Kaufman, O. Dubovik, T. F. Eck, I. Slutsker, C. Pietras, and R. N. Halthore, "Optical properties of atmospheric aerosol in maritime environments," J. Atmos. Sci. 59, 501-523 (2002). [CrossRef]
  16. W. Shi, and M. Wang, "Detection of turbid waters and absorbing aerosols for the MODIS ocean color data processing," Remote Sens. Environ. 110, 149-161 (2007). [CrossRef]
  17. M. Wang, and H. R. Gordon, "A simple, moderately accurate, atmospheric correction algorithm for SeaWiFS," Remote Sens. Environ. 50, 231-239 (1994). [CrossRef]
  18. H. R. Gordon, and M. Wang, "Surface roughness considerations for atmospheric correction of ocean color sensors. 1: The Rayleigh scattering component," Appl. Opt. 31, 4247-4260 (1992). [CrossRef] [PubMed]
  19. M. Wang, "The Rayleigh lookup tables for the SeaWiFS data processing: Accounting for the effects of ocean surface roughness," Int. J. Remote Sens. 23, 2693-2702 (2002). [CrossRef]
  20. G. M. Hale, and M. R. Querry, "Optical constants of water in the 200nm to 200µm wavelength region," Appl. Opt. 12, 555-563 (1973). [CrossRef] [PubMed]
  21. P. Y. Deschamps, M. Herman, and D. Tanre, "Modeling of the atmospheric effects and its application to the remote sensing of ocean color," Appl. Opt. 22, 3751-3758 (1983). [CrossRef] [PubMed]
  22. M. Wang, "A sensitivity study of SeaWiFS atmospheric correction algorithm: Effects of spectral band variations," Remote Sens. Environ. 67, 348-359 (1999). [CrossRef]
  23. M. Wang, "Aerosol polarization effects on atmospheric correction and aerosol retrievals in ocean color remote sensing," Appl. Opt. 45, 8951-8963 (2006). [CrossRef] [PubMed]
  24. J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, "Ocean color chlorophyll algorithms for SeaWiFS," J. Geophys. Res. 103, 24,937-24,953 (1998). [CrossRef]
  25. H. R. Gordon, "Normalized water-leaving radiance: revisiting the influence of surface roughness," Applied Optics 44, 241-248 (2005). [CrossRef] [PubMed]
  26. A. Morel, and G. Gentili, "Diffuse reflectance of oceanic waters: its dependence on Sun angle as influenced by the molecular scattering contribution," Appl. Opt. 30, 4427-4438 (1991). [CrossRef] [PubMed]
  27. M. Wang, "Effects of ocean surface reflectance variation with solar elevation on normalized water-leaving radiance," Appl. Opt. 45, 4122-4128 (2006). [CrossRef] [PubMed]
  28. S. Chen, G. Zhang, and S. Yang, "Temporal and spatial changes of suspended sediment concentration and resuspension in the Yangtze River estuary," J. Geographical Sciences 13, 498-506 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited