OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 24 — Nov. 26, 2007
  • pp: 15972–15986

Comparison of three-dimensional optical coherence tomography and high resolution photography for art conservation studies

Desmond C. Adler, Jens Stenger, Iwona Gorczynska, Henry Lie, Teri Hensick, Ron Spronk, Stephan Wolohojian, Narayan Khandekar, James Y. Jiang, Scott Barry, Alex E. Cable, Robert Huber, and James G. Fujimoto  »View Author Affiliations


Optics Express, Vol. 15, Issue 24, pp. 15972-15986 (2007)
http://dx.doi.org/10.1364/OE.15.015972


View Full Text Article

Enhanced HTML    Acrobat PDF (985 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Gold punchwork and underdrawing in Renaissance panel paintings are analyzed using both three-dimensional swept source/Fourier domain optical coherence tomography (3D-OCT) and high resolution digital photography. 3D-OCT can generate en face images with micrometer-scale resolutions at arbitrary sectioning depths, rejecting out-of-plane light by coherence gating. Therefore 3D-OCT is well suited for analyzing artwork where a surface layer obscures details of interest. 3D-OCT also enables cross-sectional imaging and quantitative measurement of 3D features such as punch depth, which is beneficial for analyzing the tools and techniques used to create works of art. High volumetric imaging speeds are enabled by the use of a Fourier domain mode locked (FDML) laser as the 3D-OCT light source. High resolution infrared (IR) digital photography is shown to be particularly useful for the analysis of underdrawing, where the materials used for the underdrawing and paint layers have significantly different IR absorption properties. In general, 3D-OCT provides a more flexible and comprehensive analysis of artwork than high resolution photography, but also requires more complex instrumentation and data analysis.

© 2007 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(110.5200) Imaging systems : Photography
(110.6880) Imaging systems : Three-dimensional image acquisition
(120.4630) Instrumentation, measurement, and metrology : Optical inspection
(140.3600) Lasers and laser optics : Lasers, tunable
(180.6900) Microscopy : Three-dimensional microscopy

ToC Category:
Imaging Systems

History
Original Manuscript: July 9, 2007
Revised Manuscript: November 9, 2007
Manuscript Accepted: November 9, 2007
Published: November 16, 2007

Citation
Desmond C. Adler, Jens Stenger, Iwona Gorczynska, Henry Lie, Teri Hensick, Ron Spronk, Stephan Wolohojian, Narayan Khandekar, James Y. Jiang, Scott Barry, Alex E. Cable, Robert Huber, and James G. Fujimoto, "Comparison of three-dimensional optical coherence tomography and high resolution photography for art conservation studies," Opt. Express 15, 15972-15986 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-24-15972


Sort:  Year  |  Journal  |  Reset  

References

  1. S. Amadesi, F. Gori, R. Grella, and G. Guattari, "Holographic methods for painting diagnostics," Appl. Opt. 13, 2009-2013 (1974). [CrossRef] [PubMed]
  2. S. Spagnolo, D. Ambrosini, and G. Guattari, "Electro-optic holography system and digital image processing for in situ analysis of microclimate variation on artworks," Journal of Optics-Nouvelle Revue D Optique 28, 99-106 (1997).
  3. D. Paoletti, G. S. Spagnolo, M. Facchini, and P. Zanetta, "Artwork diagnostics with fiberoptic digital speckle pattern interferometry," Appl. Opt. 32, 6236-6241 (1993). [CrossRef] [PubMed]
  4. P. Targowski, B. Rouba, M. Wojtkowski, and A. Kowalczyk, "The application of optical coherence tomography to non-destructive examination of museum objects," Stud. Conserv. 49, 107-114 (2004).
  5. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  6. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). [CrossRef] [PubMed]
  7. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003). [CrossRef] [PubMed]
  8. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). [CrossRef] [PubMed]
  9. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006). [CrossRef] [PubMed]
  10. R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking (FDML): unidirectional swept laser sources for OCT imaging at 370,000 lines per second," Opt. Lett. 31, 2975-2977 (2006). [CrossRef] [PubMed]
  11. L. Chih-Wei, I. J. Hsu, W. Hsiang-Chen, T. Meng-Tsan, C. C. Yang, and Y. Mei-Li, "Application of optical coherence tomography to monitoring the subsurface morphology of archaic jades," (IEEE, Taipei, Taiwan, 2003), Vol. 301, p. 308.
  12. M. Gora, M. Pircher, E. Goetzinger, T. Bajraszewski, M. Strlic, J. Kolar, C. K. Hitzenberger, and P. Targowski, "Optical coherence tomography for examination of parchment degradation," Laser Chem. 2006, Article ID 68679, 6 pages (2006).
  13. H. Liang, R. Cucu, G. M. Dobre, D. A. Jackson, J. Pedro, C. Pannell, D. Saunders, and A. G. Podoleanu, "Application of OCT to examination of easel paintings," SPIE-Santander, Spain 378-381 2004.
  14. T. Arecchi, M. Bellini, C. Corsi, R. Fontana, M. Materazzi, L. Pezzati, and A. Tortora, "Optical coherence tomography for painting diagnostics," in Optical Methods for Art and Archaeology SPIE, Munich, Germany, 278-282, (2005).
  15. T. Arecchi, M. Bellini, C. Corsi, R. Fontana, M. Materazzi, L. Pezzati, and A. Tortora, "A new tool for painting diagnostics: optical coherence tomography," Opt. Spectrosc. 101, 23-26 (2006). [CrossRef]
  16. H. Liang, M. G. Cid, R. G. Cucu, G. M. Dobre, A. G. Podoleanu, J. Pedro, and D. Saunders, "En-face optical coherence tomography - a novel application of non-invasive imaging to art conservation," Opt. Express 13, 6133-6144 (2005). [CrossRef] [PubMed]
  17. H. Liang, M. G. Cid, R. Cucu, G. Dobre, B. Kudimov, J. Pedro, D. Saunders, J. Cupitt, and A. Podoleanu, "Optical coherence tomography: a non-invasive technique applied to conservation of paintings," SPIE, Munich, Germany, 261-269, (2005).
  18. I. Gorczynska, M. Wojtkowski, M. Szkulmowski, T. Bajraszewski, B. Rouba, A. Kowalczyk, and P. Targowski, "Varnish thickness determination by spectral domain optical coherence tomography," in Lasers in the Conservation of Artworks, LACONA VI, J. Nimmricheter, W. Kautek, and M. Schreiner, eds., (Berlin-Heidelberg-New York: Springer Verlag, Vienna/Austria, 2005).
  19. M. Gora, A. Rycyk, J. Marczak, P. Targowski, and A. Kowalczyk, "From medical to art diagnostics OCT: a novel tool for varnish ablation control," in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XI (SPIE, San Jose, CA, USA, 2007), pp. 64292V-64297.
  20. P. Targowski, M. Gora, and M. Wojtkowski, "Optical coherence tomography for artwork diagnostics," Laser Chem. 2006, Article ID 35373, 11 pages (2006).
  21. A. Szkulmowska, M. Gora, M. Targowska, B. Rouba, D. Stifter, E. Breuer, and P. Targowski, "The applicability of optical coherence tomography at 1.55 μm to the examination of oil paintings," in Lasers in the Conservation of Artworks, LACONA VI, J. Nimmricheter, W. Kautek, and M. Schreiner, eds. (Berlin-Heidelberg-New York: Springer Verlag, Vienna/Austria, 2005).
  22. P. Targowski, M. Gora, T. Bajraszewski, M. Szkulmowski, B. Rouba, T. Lekawa-Wyslouch, and L. Tyminska-Widmer, "Optical coherence tomography for tracking canvas deformation," Laser Chem. 2006, Article ID 93658, 8 pages (2006). [CrossRef]
  23. E. S. Skaug, Punch marks from Giotto to Fra Angelico: attribution, chronology, and workshop relationships in tuscan panel painting circa 1330 - 1430. (IIC - Nordic Group, Oslo, 1994). [PubMed]
  24. M. S. Frinta, "Observations on the Trecento and early Quattrocento workshop," in The artist's workshop. Studies in the history of art., P. M. Lukehart, ed. (National Gallery of Art, 1993), pp. 18-34.
  25. D. Bomford, ed. Art in the making: underdrawings in Renaissance paintings (National Gallery Company, London, 2002).
  26. M. Faries, and R. Spronk, eds. Recent development in the technical examination of early Netherlandish painting (Harvard University Art Museums, Cambridge, 2003).
  27. G. Mazzoni, ed., Falsi d'autore (Protagon Editori, Siena, 2004).
  28. S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, "Swept source optical coherence microscopy using a Fourier domain mode locked laser," Opt. Express 10, 6210-6217 (2007). [CrossRef]
  29. P. M. Andrews, Y. Chen, S. Huang, D. C. Adler, R. Huber, J. Jiang, S. Barry, A. E. Cable, and J. G. Fujimoto, "High-speed three-dimensional optical coherence tomography imaging of kidney ischemia in vivo," Lab. Invest. In review (2007).
  30. R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3237 (2006). [CrossRef] [PubMed]
  31. D. C. Adler, R. Huber, and J. G. Fujimoto, "Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode locked lasers," Opt. Lett. 32, 626-628 (2007). [CrossRef] [PubMed]
  32. R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, "Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second," Opt. Lett. 32, 2049-2051 (2007). [CrossRef] [PubMed]
  33. C. K. Hitzenberger, P. Trost, P. W. Lo, and Q. Y. Zhou, "Three-dimensional imaging of the human retina by high-speed optical coherence tomography," Opt. Express 11, 2753-2761 (2003). [CrossRef] [PubMed]
  34. R. Spronk, and C. Van Daalen, "Two scenes from the Passion at the Harvard Art Museums; a tale of two Antwerp workshops?" in Making and marketing: studies of the painting process in fifteenth- and sixteenth-century Netherlandish workshops, M. Faries, ed. (Brepols Publishers, 2006). [PubMed]
  35. D. Koozekanani, K. Boyer, and C. Roberts, "Retinal thickness measurements from optical coherence tomography using a Markov boundary model," IEEE T. Med. Imaging 20, 900-916 (2001). [CrossRef]
  36. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, "Optical coherence microscopy in scattering media," Opt. Lett. 19, 590-592 (1994). [CrossRef] [PubMed]
  37. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, "Full-field optical coherence microscopy," Opt. Lett. 23, 244-246 (1998). [CrossRef]
  38. J. W. Hettinger, M. D. P. Mattozzi, W. R. Myers, M. E. Williams, A. Reeves, R. L. Parsons, R. C. Haskell, D. C. Petersen, R. Y. Wang, and J. I. Medford, "Optical coherence microscopy. A technology for rapid, in vivo, non-destructive visualization of plants and plant cells," Plant Physiol. 123, 3-15 (2000). [CrossRef] [PubMed]
  39. A. D. Aguirre, P. Hsiung, T. H. Ko, I. Hartl, and J. G. Fujimoto, "High-resolution optical coherence microscopy for high-speed, in vivo cellular imaging," Opt. Lett. 28, 2064-2066 (2003). [CrossRef] [PubMed]
  40. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, "Extended focus depth for Fourier domain optical coherence microscopy," Opt. Lett. 31, 2450-2452 (2006). [CrossRef] [PubMed]
  41. W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, "Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera," Opt. Express 14, 726-735 (2006). [CrossRef] [PubMed]
  42. S. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, "Swept source optical coherence microscopy using a Fourier domain mode-locked laser," Opt. Express 15, 6210-6217 (2007). [CrossRef] [PubMed]
  43. J. Dunkerton, and N. Penny, "The infra-red examination of Raphael's "Garvagh Madonna"," in National Gallery Technical Bulletin (NGPL, London, 1993), pp. 6-21.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (3134 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited