OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 24 — Nov. 26, 2007
  • pp: 16110–16123

Mode profile dispersion in the generalized nonlinear Schrödinger equation

J. Lægsgaard  »View Author Affiliations

Optics Express, Vol. 15, Issue 24, pp. 16110-16123 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (475 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The formulation of Schrödinger-like equations for nonlinear pulse propagation in a single-mode microstructured optical fiber with a strongly frequency-dependent guided-mode profile is investigated. A correct account of mode profile dispersion in general necessiates a generalization of the effective area concept commonly used in the generalized nonlinear Schrödinger equation (GNLSE). A numerical scheme to this end is developed, and applied to a solid-core photonic bandgap fiber as a test case. It is further shown, that a simple reformulation of the GNLSE, expressed only in terms of the traditional frequency-dependent effective area, yields a good agreement with the more complete theory.

© 2007 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Nonlinear Optics

Original Manuscript: September 18, 2007
Revised Manuscript: November 13, 2007
Manuscript Accepted: November 16, 2007
Published: November 20, 2007

Jesper Laegsgaard, "Mode profile dispersion in the generalised nonlinear Schrödinger equation," Opt. Express 15, 16110-16123 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135 (2006).
  2. A. Fuerbach, P. Steinvurzel, J. Bolger, A. Nulsen, and B. Eggleton, "Nonlinear propagation effects in antiresonant high-index inclusion photonic crystal fibers," Opt. Lett. 30, 830-832 (2005). [CrossRef]
  3. A. Fuerbach, P. Steinvurzel, J. Bolger, and B. Eggleton, "Nonlinear pulse propagation at zero dispersion wavelength in anti-resonant photonic crystal fibers," Opt. Express 13, 2977-2987 (2005). [CrossRef]
  4. D. Ouzounov, F. Ahmad, D. Muller, N. Venkataraman, M. Gallagher, M. Thomas, J. Silcox, K. Koch, and A. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702-1704 (2003). [CrossRef]
  5. D. G. Ouzounov, C. J. Hensley, A. L. Gaeta, N. Venkateraman, M. T. Gallagher, and K. W. Koch, "Soliton pulse compression in photonic band-gap fibers," Opt. Express 13, 6153-6159 (2005). [CrossRef]
  6. C. J. Hensley, D. G. Ouzounov, A. L. Gaeta, N. Venkataraman, M. T. Gallagher, and K. W. Koch, "Silica-glass contribution to the effective nonlinearity of hollow-core photonic band-gap fibers," Opt. Express 15, 3507-3512 (2007). [CrossRef]
  7. F. Gerome, K. Cook, A. George, W. Wadsworth, and J. Knight, "Delivery of sub-100fs pulses through 8m of hollow-core fiber using soliton compression," Opt. Express 15, 7126-7131 (2007). [CrossRef]
  8. J. Lægsgaard, N. A. Mortensen, J. Riishede, and A. Bjarklev, "Material effects in airguiding photonic bandgap fibers," J. Opt. Soc. Am. B 20, 2046-51 (2003). [CrossRef]
  9. N. Karasawa, S. Nakamura, and N. Nakagawa, "Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband," IEEE J. Quantum Electron. 37, 398-404 (2001). [CrossRef]
  10. G. Chang, T. B. Norris, and H. G. Winful, "Optimization of supercontinuum generation in photonic crystal fibers for pulse compression," Opt. Lett. 28, 546-548 (2003). [CrossRef]
  11. B. Kibler, J. M. Dudley, and S. Coen, "Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area," Appl. Phys. B 81, 337-342 (2005). [CrossRef]
  12. P. Mamyshev and S. Chernikov, "Ultrashort-pulse propagation in optical fibers," Opt. Lett. 15, 1076-1078 (1990). [CrossRef]
  13. M. Kolesik, E. Wright, and J. Moloney, "Simulation of femtosecond pulse propagation in sub-micron diameter tapered fibers," Appl. Phys. B: Lasers Opt. 79, 293-300 (2004). [CrossRef]
  14. A. Ferrando, M. Zacares, P. de Cordoba, D. Binosi, and A. Montero, "Forward-backward equations for nonlinear propagation in axially invariant optical systems," Phys. Rev. E 71, 16,601 (2005).
  15. Y. Mizuta, M. Nagasawa, M. Ohtani, and M. Yamashita, "Nonlinear propagation analysis of few-optical-cycle pulses for subfemtosecond compression and carrier envelope phase effect," Phys. Rev. A 72, 63,802 (2005).
  16. K. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989). [CrossRef]
  17. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001).
  18. J. Riishede, J. Lægsgaard, J. Broeng, and A. Bjarklev, "All-silica photonic bandgap fibre with zero dispersion and large mode area at 730 nm," J. Opt. A: Pure and Applied Optics 6, 667-70 (2004). [CrossRef]
  19. A. Argyros, T. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, F. Luan, and P. S. J. Russell, "Photonic bandgap with an index step of one percent," Opt. Express 13, 309-314 (2005). [CrossRef] [PubMed]
  20. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, "Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm," Opt. Express 13, 8452-8459 (2005). [CrossRef] [PubMed]
  21. A. K. Abeeluck, N. M. Litchinitser, C. Headley, and B. J. Eggleton, "Analysis of spectral characteristics of photonic bandgap waveguides," Opt. Express 10, 1320-1333 (2002). [PubMed]
  22. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, "Resonances in microstructured optical waveguides," Opt. Express 11, 1243-1251 (2003). [CrossRef] [PubMed]
  23. J. Lægsgaard, "Gap formation and guided modes in photonic bandgap fibres with high-index rods," J. Opt. A: Pure and Applied Optics 6, 798-804 (2004). [CrossRef]
  24. J. P. Gordon, "Theory of the soliton self-frequency shift," Opt. Lett. 10, 662-664 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited