OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 24 — Nov. 26, 2007
  • pp: 16141–16160

In vivo functional imaging of human cone photoreceptors

Ravi S. Jonnal, Jungtae Rha, Yan Zhang, Barry Cense, Weihua Gao, and Donald T. Miller  »View Author Affiliations

Optics Express, Vol. 15, Issue 24, pp. 16141-16160 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (3808 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We evaluate a novel non-invasive optical technique for observing fast physiological processes, in particular phototransduction, in single photoreceptor cells in the living human eye. The method takes advantage of the interference of multiple reflections within the outer segments (OS) of cones. This self-interference phenomenon is highly sensitive to phase changes such as those caused by variations in refractive index and scatter within the photoreceptor cell. A high-speed (192 Hz) flood-illumination retina camera equipped with adaptive optics (AO) is used to observe individual photoreceptors, and to monitor changes in their reflectance in response to visible stimuli (“scintillation”). AO and high frame rates are necessary for resolving individual cones and their fast temporal dynamics, respectively. Scintillation initiates within 5 to 10 ms after the onset of the stimulus flash, lasts 300 to 400 ms, is observed at visible and near-infrared (NIR) wavelengths, and is highly sensitive to the coherence length of the imaging light source. To our knowledge this is the first demonstration of in vivo optical imaging of the fast physiological processes that accompany phototransduction in individual photoreceptors.

© 2007 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(170.0110) Medical optics and biotechnology : Imaging systems
(330.4300) Vision, color, and visual optics : Vision system - noninvasive assessment
(330.5310) Vision, color, and visual optics : Vision - photoreceptors
(330.5380) Vision, color, and visual optics : Physiology

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: August 31, 2007
Revised Manuscript: October 29, 2007
Manuscript Accepted: November 2, 2007
Published: November 20, 2007

Virtual Issues
Vol. 2, Iss. 12 Virtual Journal for Biomedical Optics

Ravi S. Jonnal, Jungtae Rha, Yan Zhang, Barry Cense, Weihua Gao, and Donald T. Miller, "In vivo functional imaging of human cone photoreceptors," Opt. Express 15, 16141-16160 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. R. W. Rodiek, The First Steps in Seeing (Sinaur Associates, P.O. Box 407, Sunderland, Massachusetts 01375-0407, 1998).
  2. A. E. Elsner, S. A. Burns, and R. H. Webb, "Mapping cone photopigment optical density," J. Opt. Soc. Am. A 10, 52-58 (1993). [CrossRef] [PubMed]
  3. D. C. Hood and D. G. Birch, "Phototransduction in human cones measured using the a-wave of the ERG," Vision Res. 35, 2801-2810 (1995). [CrossRef] [PubMed]
  4. C. Friedburg, C. P. Allen, P. J. Mason, and T. D. Lamb, "Contributions of cone photoreceptors and post-receptoral mechanisms to the human photopic electroretinogram," J. Physiol. 556, 819 - 834 (2004). [CrossRef] [PubMed]
  5. K. P. Hofmann, R. Uhl, W. Hoffmann, and W. Kreutz, "Measurements of fast light-induced light-scattering and-absorption changes in outer segments of vertebrate light sensitive rod cells," Biophys. Struct. Mech. 2, 61-77 (1976). [CrossRef]
  6. H. H. Harary, J. E. Brown, and L. H. Pinto, "Rapid light-induced changes in near infrared transmission of rods in Bufo marinus," Science 202, 1083-1085 (1978). [CrossRef] [PubMed]
  7. D. R. Pepperberg, M. Kahlert, A. Krause, and K. P. Hofmann, "Photic modulation of a highly sensitive, near-infrared light-scattering signal recorded from intact retinal photoreceptors," Proc. Natl. Acad. Sci. USA 85, 5531-5535 (1988). [CrossRef] [PubMed]
  8. X.-C. Yao and J. S. George, "Near-infrared imaging of fast intrinsic optical responses in visible light-activated amphibian retina," J. Biomed. Opt. 11, 064030 (2006). [CrossRef] [PubMed]
  9. X.-C. Yao, A. Yamauchi, B. Perry, and J. S. George, "Rapid optical coherence tomography and recording functional scattering changes from activated frog retina," Appl. Opt. 44, 2019-2023 (2005). [CrossRef] [PubMed]
  10. K. Bizheva, R. Pflug, B. Hermann, B. Považay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, andW. Drexler, "Optophysiology: Depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography," Proc. Natl. Acad. Sci. USA 103, 5066-5071 (2006). [CrossRef] [PubMed]
  11. V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, "In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography," Opt. Lett. 31, 2308-2310 (2006). [CrossRef] [PubMed]
  12. J. Liang, D. R. Williams, and D. T. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14, 2884-2892 (1997). [CrossRef]
  13. A. Roorda and D. R. Williams, "Optical fiber properties of individual human cones," J. Vision 2, 404 - 412 (2002). [CrossRef]
  14. A. Pallikaris, D. R. Williams, and H. Hofer, "The reflectance of single cones in the living human eye," Invest. Ophthalmol. Visual Sci. 44, 4580 - 4592 (2003). [CrossRef]
  15. S. S. Choi, N. Doble, J. L. Hardy, S. M. Jones, J. L. Keltner, S. S. Olivier, and J. S. Werner, "In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function," Invest. Ophthalmol. Visual Sci. 47, 2080 - 2092 (2006). [CrossRef]
  16. J. Rha, K. E. Thorn, R. S. Jonnal, J. Qu, Y. Zhang, and D. T. Miller, "Adaptive optics flood-illumination camera for high speed retinal imaging," Opt. Express 14, 4552-4569 (2006). [CrossRef] [PubMed]
  17. A. Dunn, H. Bolay, M. Moskowitz, and D. Boas, "Dynamic imaging of cerebral blood flow using laser speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001). [CrossRef] [PubMed]
  18. J. Rha, R. S. Jonnal, Y. Zhang, and D. T. Miller, "Video rate imaging with a conventional flood illuminated adaptive optics retina camera," 88th Optical Society of America Anual Meeting (2004). Conference presentation.
  19. J. Rha, R. S. Jonnal, Y. Zhang, and D. T. Miller, "Rapid fluctuation in the reflectance of single cones and its dependence on photopigment bleaching," Invest. Ophthalmol. Visual Sci. 46, E-abstract 3546 (2005).
  20. J. Rha, R. S. Jonnal, Y. Zhang, B. Cense,W. Gao, and D. T. Miller, "Dependence of cone scintillation on photopigment bleaching and coherence length of the imaging light source," Invest. Ophthalmol. Visual Sci. 47, E-abstract 2666 (2006).
  21. R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, W. Gao, and D. T. Miller, "Functional imaging of single cone photoreceptors using an adaptive optics flood illumination camera," Invest. Ophthalmol. Visual Sci. 48, EAbstract: 1955 (2007).
  22. R. S. Jonnal, J. Rha, Y. Zhang, B. Cense, and D. T. Miller, "High-speed adaptive optics functional imaging of cone photoreceptors at a 100 MHz pixel rate," 6426, 64261N Proc. SPIE (2007).
  23. Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005). [CrossRef] [PubMed]
  24. ANSI, American national standard for the safe use of lasers, (Laser Institute of America, 2000) Vol. Z136.1.
  25. A. Snyder, "Stiles-crawford effect-explanation and consequences," Vision Res. 13, 1115-1137 (1972). [CrossRef]
  26. L. G. Brown, "A survey of image registration techniques," ACM Comput. Surv. 24, 325-376 (1992). [CrossRef]
  27. L. T. Sharpe, A. Stockman, W. Jagla, and H. Jägle, "A luminous efficiency function, V *λ, for daylight adaptation," J. Vision 5, 948 - 968 (2005). [CrossRef]
  28. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006). [CrossRef] [PubMed]
  29. W. Drexler, H. Sattmann, B. Hermann, T. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. Fujimoto, and A. Fercher, "Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography," Arch. Ophthalmol. 121, 695-706 (2003). [CrossRef]
  30. W. Gao, B. Cense, Y. Zhang, R. S. Jonnal, and D. T. Miller, "Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography," Opt. Express (2007). Submitted. [PubMed]
  31. H. K¨uhn, N. Bennett, M. Michel-Villaz, and M. Chabre, "Interactions between photoscited rhodopsin and GTPbinding protein: kinetic and stoichiometric analyses from light-scattering changes," Proc. Natl. Acad. Sci. USA 78, 6873 - 6877 (1981). [CrossRef] [PubMed]
  32. V. Y. Arshavsky, T. D. Lamb, and J. EdwardN. Pugh, "G proteins and phototransduction," Annu. Rev. Physiol. 64, 153-187 (2002). [CrossRef] [PubMed]
  33. J. Enoch, J. Scandrett, and F. L. T. Jr., "A study of the effects of bleaching on the width and index of refraction of frog rod outer segments," Vision Res. 13, 171-183 (1973). [CrossRef] [PubMed]
  34. J. Enoch, D. K. Hudson, V. Lakshminarayanan, J. Scandrett, and M. Bernstein, "Effect of bleaching on the width and index of refraction of goldfish rod and cone outer segment fragments," Optometry Vision Sci. 67, 600-605 (1990). [CrossRef]
  35. J. E. N. Pugh and T. D. Lamb, "Amplification and kinetics of the activation steps in phototransduction," Biochim. Biophys. Acta 1141, 111-149 (1993). [CrossRef] [PubMed]
  36. S. T. Menon, M. Han, and T. P. Sakmar, "Rhodopsin: structural basis of molecular physiology," Phys. Rev. 81, 1659 - 1688 (2001). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (3017 KB)     
» Media 2: AVI (978 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited