OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 25 — Dec. 10, 2007
  • pp: 16527–16539

Inhibition of multipolar plasmon excitation in periodic chains of gold nanoblocks

Kosei Ueno, Saulius Juodkazis, Vygantas Mizeikis, Dai Ohnishi, Keiji Sasaki, and Hiroaki Misawa  »View Author Affiliations

Optics Express, Vol. 15, Issue 25, pp. 16527-16539 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1279 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Periodically corrugated chains of gold nanoblocks, fabricated with high precision by electron-beam lithography and lift-off techniques, were found to exhibit optical signatures of particle plasmon states in which relative contribution of longitudinal multipolar plasmons is significantly lower than that in equivalent rectangular gold nanorods. Plasmonic response of periodic chains is dominated by dipolar plasmon modes, which in the absence of multipolar exciations are seen as background-free and spectrally well-resolved extinction peaks at infrared (IR) wavelengths. This observation may help improve spectral parameters of IR plasmonic sub-wavelength antennae. Comparative studies of plasmon damping and dephasing in corrugated chains of nanoblocks and smooth rectangular nanorods are also presented.

© 2007 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics

ToC Category:
Optics at Surfaces

Original Manuscript: October 16, 2007
Revised Manuscript: November 21, 2007
Manuscript Accepted: November 25, 2007
Published: November 29, 2007

Kosei Ueno, Saulius Juodkazis, Vygantas Mizeikis, Dai Ohnishi, Keiji Sasaki, and Hiroaki Misawa, "Inhibition of multipolar plasmon excitation in periodic chains of gold nanoblocks," Opt. Express 15, 16527-16539 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Hutter and J. Fendler, "Exploitation of localized surface plasmon resonance," Adv. Materials 16, 1685-1706 (2004). [CrossRef]
  2. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-R16359 (2000). [CrossRef]
  3. P. MElschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D.W. Pohl, "Resonant optical antennas." Science 308, 1607-9 (2005). URL http://dx.doi.org/10.1126/science.1111886>. [CrossRef]
  4. M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides." Phys. Rev. Lett. 93, 137404 (2004). [CrossRef] [PubMed]
  5. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997). [CrossRef]
  6. C. Anceau, S. Brasselet, J. Zyss, and P. Gadenne, "Local second-harmonic generation eto the erefore, nhancement on gold nanostructures probed by two-photon microscopy." Opt. Lett. 28, 713-5 (2003). [CrossRef] [PubMed]
  7. T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy." J. Microsc. 202, 72-6 (2001). [CrossRef] [PubMed]
  8. A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, "Plasmon-coupled tip-enhanced near-field optical microscopy." J. Microsc. 210, 220-4 (2003). [CrossRef] [PubMed]
  9. K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, "Clusters of closely-spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths," Accepted to Adv. Mater. (2007).
  10. N. Nath and A. Chilkoti, "Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size." Anal. Chem. 76, 5370-8 (2004). URL http://dx.doi.org/10.1021/ac049741z>. [CrossRef] [PubMed]
  11. C. Sönnichsen and A. P. Alivisatos, "Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy." Nano Lett. 5, 301-4 (2005). URL http://dx.doi.org/10.1021/nl048089k>. [CrossRef] [PubMed]
  12. K. Ueno, S. Juodkazis, M. Mino, V. Mizeikis, and H. Misawa, "Spectral sensitivity of uniform arrays of gold nanorods to dielectric environment," J. Phys. Chem. C 111, 4180-4184 (2007). [CrossRef]
  13. T. S. Hartwick, D. T. Hodges, D. H. Barker, and F. B. Foote, "Far infrared imagery," Appl. Opt. 15, 1919-1922 (1976). [CrossRef] [PubMed]
  14. B. B. Hu and M. C. Nuss, "Imaging with terahertz waves," Opt. Lett. 20, 1716-1718 (1995). [CrossRef] [PubMed]
  15. J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner, F. R. Aussenegg, and J. C. Weeber, "Design of multipolar plasmon excitations in silver nanoparticles," Appl. Phys. Lett. 77, 3379-3381 (2000). [CrossRef]
  16. G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Agnanowires," Phys. Rev. B 68, 155427 (2003). [CrossRef]
  17. K. Ueno, V. Mizeikis, S. Juodkazis, K. Sasaki, and H. Misawa, "Optical properties of nano-engineered gold blocks," Opt. Lett. 30, 2158 - 2160 (2005). [CrossRef] [PubMed]
  18. K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, "Spectrally-resolved atomicscale length variations of gold nanorods." J. Am. Chem. Soc. 128, 14226-14227 (2006). URL http://dx.doi.org/10.1021/ja0645786>. [CrossRef] [PubMed]
  19. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 77402 (2002). [CrossRef]
  20. A. Wokaun, J. P. Gordon, and P. F. Liao, "Radiation Damping in Surface-Enhanced Raman Scattering," Phys. Rev. Lett. 48, 957-960 (1982). [CrossRef]
  21. K. ImuraT. Nagahara, and H. Okamoto, "Near-field optical imaging of plasmon modes in gold nanorods," J. Chem. Phys. 122, 154701 (2005). [CrossRef] [PubMed]
  22. H. J. Huang, C. ping Yu, H. C. Chang, K. P. Chiu, H. M. Chen, R. S. Liu, and D. P. Tsai, "Plasmonic optical properties of a single gold nano-rod," Opt. Express 15, 7132-7139 (2007). [CrossRef]
  23. P. Johnson and R. Christy, "Optical constants of noble metals," Phys. Rev. B 6, 4730-4739 (1972). [CrossRef]
  24. S. Enoch, R. Quidant, and G. Badenes, "Optical sensing based on plasmon coupling in nanoparticle arrays," Opt. Express 12, 3422-3427 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited