OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 25 — Dec. 10, 2007
  • pp: 16581–16595

Investigation of signal dependence on tissue thickness in near infrared spectral imaging

Bevin Lin, Victor Chernomordik, Amir Gandjbakhche, Dennis Matthews, and Stavros Demos  »View Author Affiliations


Optics Express, Vol. 15, Issue 25, pp. 16581-16595 (2007)
http://dx.doi.org/10.1364/OE.15.016581


View Full Text Article

Enhanced HTML    Acrobat PDF (1476 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The signal intensity in near infrared autofluorescence and polarization sensitive light scattering imaging is explored as a function of tissue thickness using homogeneous porcine cardiac tissue samples as a model system. Eight images are recorded from each tissue sample including two autofluorescence images obtained under 408 nm and 633 nm excitation and six light scattering images acquired with alternating linear polarization orientations (parallel or perpendicular) under 700 nm, 850 nm, and 1000 nm linearly polarized illumination. The mean image intensity of each sample for each imaging method is plotted as a function of tissue thickness. The experimental results indicate a strong dependence of the detected signal on tissue thickness up to approximately 2 mm. Furthermore, the intensity of the spectral ratio images also exhibit thickness-dependent changes up to about 3 mm. The behavior of the light scattering experimental data was reproduced using a mathematical model based on a modified version of the random walk theory of photon migration.

© 2007 Optical Society of America

OCIS Codes
(000.1430) General : Biology and medicine
(110.3080) Imaging systems : Infrared imaging
(170.1610) Medical optics and biotechnology : Clinical applications
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: October 5, 2007
Revised Manuscript: November 27, 2007
Manuscript Accepted: November 28, 2007
Published: November 29, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Bevin Lin, Victor Chernomordik, Amir Gandjbakhche, Dennis Matthews, and Stavros Demos, "Investigation of signal dependence on tissue thickness in near infrared spectral imaging," Opt. Express 15, 16581-16595 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16581


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. R. Alfano, D. Tata, J. Cordero, P. Tomashefsky, F. Longo, M. Alfano, "Laser-induced fluorescence spectroscopy from native cancerous and normal tissue," IEEE J. Quantum Electron 20, 1507-1511 (1984). [CrossRef]
  2. R. Richards-Kortum, "Quantitative Optical Spectroscopy for Tissue Diagnosis," Annu. Rev. Phys. Chem. 47, 555-606 (1996). [CrossRef] [PubMed]
  3. G. A. Wagnieres, W. M. Star, and B. C. Wilson, "In vivo fluorescence spectroscopy and imaging for oncological applications," Photochem. Photobiol. 68, 603-632 (1998). [PubMed]
  4. S. G. Demos, A. J. Vogel, and A. H. Gandjbakhche, "Advances in Optical Spectroscopy and Imaging of Breast Lesions," J. Mammary Gland Biol. 11, 165-181 (2006). [CrossRef]
  5. J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada "Spectroscopic diagnosis of bladder cancer with elastic light scattering," Lasers Surg. Med. 17, 350-357 (1995). [CrossRef] [PubMed]
  6. Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, "Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer," IEEE J. Sel. Top. Quantum Electron 9, 243-256 (2003). [CrossRef]
  7. R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, "Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture," J. Biomed. Opt. 8, 7-16 (2003). [CrossRef] [PubMed]
  8. G. Zonios, L. T. Perelman, V. M. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, "Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo," Appl. Opt. 38, 6628-6637 (1999) [CrossRef]
  9. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, "Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics," Appl. Opt. 37, 3586-3593 (1998) [CrossRef]
  10. S. G. Demos and R. R. Alfano, "Optical polarization imaging," Appl. Opt. 36, 150-155 (1997). [CrossRef] [PubMed]
  11. S. G. Demos, H. B. Radousky, and R. R. Alfano, "Deep subsurface imaging in tissues using spectral and polarization filtering," Opt Express 7, 23-28 (2000). [CrossRef] [PubMed]
  12. G. N. Stamatas, M. Southall, and N. Kollias, "In vivo monitoring of cutaneous edema using spectral imaging in the visible and near infrared," J. Invest. Dermatol. 126, 1753-1760 (2006). [CrossRef] [PubMed]
  13. M. Hassan, R. F. Little, A. Vogel, K. Aleman, K. Wyvill, R. Yarchoan, and A. H. Gandjbakhche, "Quantitative assessment of tumor vasculature and response to therapy in Kaposi's sarcoma using functional noninvasive imaging," Technol. Cancer Res. T 3,451-457 (2004).
  14. C. A. Lieber, S. Urayama, N. Rahim, R. Tu, R. Saroufeem, B. Reubner, and S. G. Demos, "Multimodal near infrared spectral imaging as an exploratory tool for dysplastic esophageal lesion identification," Opt Express 14, 2211-2219 (2006). [CrossRef] [PubMed]
  15. S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, and R. R. Alfano, "Time resolved degree of polarization for human breast tissue," Opt. Commun. 124. 439-442 (1996). [CrossRef]
  16. G. H. Weiss, A. H. Gandjbakhche, and J. Masoliver, "Isotropization length for random-walk models of photon migration in turbid media," J. Mod. Opt. 42, 1567-1574 (1995). [CrossRef]
  17. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Experimental test of theoretical models for time-resolved reflectance," Med. Phys. 23, 1625 (1996). [CrossRef] [PubMed]
  18. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing (Cambridge University Press, New York, 1992).
  19. A. H. Gandjbakhche, R. F. Bonner, A. E. Arai, R. S. Balaban, "Visible-light photon migration through myocardium in vivo," Am. J. Physiol-Heart C. 277, H698-H704 (1999).
  20. J. Swartling, S. Palsson, P. Platonov, S. B. Olsson, and S. Andersson-Engels, "Changes in tissue optical properties due to radio-frequency ablation of myocardium," Med. Biol. Eng. Comput. 41, 403-409 (2003). [CrossRef] [PubMed]
  21. V. K. Ramshesh and S. B. Knisley, "Spatial localization of cardiac optical mapping with multiphoton excitation," J. Biomed. Opt. 8, 253-259 (2003). [CrossRef] [PubMed]
  22. S. G. Demos, R. Gandour-Edwards, R. Ramsamooj, and R. D. White, "Near-infrared autofluorescence imaging for detection of cancer," J. Biomed. Opt. 9, 587-592 (2004). [CrossRef] [PubMed]
  23. S. L. Jacques, J. R. Roman, and K. Lee, "Imaging superficial tissues with polarized light," Laser Surg. Med. 26, 119-129 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited