OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 25 — Dec. 10, 2007
  • pp: 16839–16851

Time-gated single photon counting enables separation of CARS microscopy data from multiphoton-excited tissue autofluorescence

Sonny Ly, Gregory McNerney, Samantha Fore, James Chan, and Thomas Huser  »View Author Affiliations


Optics Express, Vol. 15, Issue 25, pp. 16839-16851 (2007)
http://dx.doi.org/10.1364/OE.15.016839


View Full Text Article

Enhanced HTML    Acrobat PDF (387 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate time-gated confocal imaging as a means to separate coherent anti-Stokes Raman scattering (CARS) microscopy data from multi-photon excited endogenous fluorescence in tissue. CARS is a quasi-instantaneous process and its signal decay time is only limited by the system’s instrument response function (IRF). Signals due to two-photon-excited (TPE) tissue autofluorescence with excited state lifetimes on the nanosecond scale can be identified and separated from the CARS signal by employing time-gating techniques. We demonstrate this improved contrast on the example of CARS microscopy of intact roots of plant seedlings as well as on rat arterial tissue.

© 2007 Optical Society of America

OCIS Codes
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(190.5650) Nonlinear optics : Raman effect
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: November 2, 2007
Revised Manuscript: November 30, 2007
Manuscript Accepted: December 3, 2007
Published: December 4, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Sonny Ly, Gregory McNerney, Samantha Fore, James Chan, and Thomas Huser, "Time-gated single photon counting enables separation of CARS microscopy data from multiphoton-excited tissue autofluorescence," Opt. Express 15, 16839-16851 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16839


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. L. Evans, E. O. Potma, M. Puoris'haag, D. Cote, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy," PNAS 102, 16807-16812 (2005). [CrossRef] [PubMed]
  2. T. B. Huff and J. X. Cheng, "In vivo coherent anti-Stokes Raman scattering imaging of sciatic nerve tissue," J. Microsc. 225, 175-182 (2007). [CrossRef] [PubMed]
  3. H. Kano and H. Hamaguchi, "Vibrationally resonant imaging of a single living cell by supercontinuum- based multiplex coherent anti-Stokes Raman Scattering Microspectroscopy," Opt. Express 13, 1322- 1327 (2005). [CrossRef] [PubMed]
  4. O. Burkacky, A. Zumbusch, C. Brackmann, and A. Enejder, "Dual-pump coherent anti-Stokes-Raman Scattering Microscopy," Opt. Lett. 31, 3656-3658 (2006). [CrossRef] [PubMed]
  5. X. L. Nan, E. O. Potma, and X. S. Xie, "Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-stokes Raman Scattering Microscopy," Biophys. J. 91, 728-735 (2006). [CrossRef] [PubMed]
  6. L. Tong, Y. Lu, R. J. Lee, and J. X. Cheng, "Imaging receptor-mediated endocytosis with a polymeric nanoparticle-based coherent anti-stokes raman scattering probe," J. Phys. Chem. B 111, 9980-9985 (2007). [CrossRef] [PubMed]
  7. H. F. Wang, Y. Fu, P. Zickmund, R. Y. Shi, and J. X. Cheng, "Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues," Biophys. J. 89, 581-591 (2005). [CrossRef] [PubMed]
  8. J. X. Cheng, Y. K. Jia, G. F. Zheng, and X. S. Xie, "Laser-scanning coherent anti-stokes RamanScattering Microscopy and applications to cell biology," Biophys. J. 83, 502-509 (2002). [CrossRef] [PubMed]
  9. J. X. Cheng, A. Volkmer, and X. S. Xie, "Theoretical and experimental characterization of Coherent anti- Stokes Raman Scattering Microscopy," J. Opt. Soc. Am. B 19, 1363-1375 (2002) [CrossRef]
  10. J. X. Cheng and X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications," J. Phys. Chem. B 108, 827-840 (2004). [CrossRef]
  11. A. Volkmer, J. X. Cheng, and X. S. Xie, "Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy," Phys. Rev. Lett. 8702, 4 (2001).
  12. N. Djaker, P. F. Lenne, D. Marguet, A. Colonna, C. Hadjur, and H. Rigneault, "Coherent anti-Stokes Raman scattering microscopy (CARS): Instrumentation and applications," Nuc. Instr. Meth. Phys. 571, 177-181 (2007). [CrossRef]
  13. L. G. Rodriguez, S. J. Lockett, and G. R. Holtom, "Coherent anti-stokes Raman scattering microscopy: A biological review," Cytometry A 69A, 779-791 (2006). [CrossRef]
  14. G. J. Puppels, F. F. M. Demul, C. Otto, J. Greve, M. Robertnicoud, D. J. Arndtjovin, and T. M. Jovin, "Studying single living cells and chromosomes by Confocal Raman Microspectroscopy," Nature 347, 301-303 (1990). [CrossRef] [PubMed]
  15. J. W. Chan, A. P. Esposito, C. E. Talley, C. W. Hollars, S. M. Lane, and T. Huser, "Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy," Anal. Chem. 76, 599-603 (2004). [CrossRef] [PubMed]
  16. N. J. Crane, M. D. Morris, M. A. Ignelzi, and G. G. Yu, "Raman imaging demonstrates FGF2-induced craniosynostosis in mouse calvaria," J. Biomed. Opt. 10, 8 (2005). [CrossRef]
  17. M. Kazanci, H. D. Wagner, N. I. Manjubala, H. S. Gupta, E. Paschalis, P. Roschger, and P. Fratzl, "Raman imaging of two orthogonal planes within cortical bone," Bone 41, 456-461 (2007). [CrossRef] [PubMed]
  18. G. J. Zhang, D. J. Moore, C. R. Flach, and R. Mendelsohn, "Vibrational microscopy and imaging of skin: from single cells to intact tissue," Anal. Bioanal. Chem. 387, 1591-1599 (2007). [CrossRef]
  19. G. J. Zhang, D. J. Moore, K. B. Sloan, C. R. Flach, and R. Mendelsohn, "Imaging the prodrug-to-drug transformation of a 5-fluorouracil derivative in skin by confocal Raman microscopy," J. Invest. Dermatol. 127, 1205-1209 (2007). [CrossRef] [PubMed]
  20. M. D. Duncan, J. Reintjes, and T. J. Manuccia, "Scanning Coherent Anti-Stokes Raman Microscope," Opt. Lett. 7, 350-352 (1982). [CrossRef] [PubMed]
  21. A. Zumbusch, G. R. Holtom, and X. S. Xie, "Three-dimensional vibrational imaging by coherent anti- Stokes Raman scattering," Phys. Rev. Lett. 82, 4142-4145 (1999). [CrossRef]
  22. K. Konig and I. Riemann, "High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution," J. Biomed. Opt. 8, 432-439 (2003). [CrossRef] [PubMed]
  23. K. Konig, K. Schenke-Layland, I. Riemann, and U. A. Stock, "Multiphoton autofluorescence imaging of intratissue elastic fibers," Biomaterials 26, 495-500 (2005). [CrossRef]
  24. M. C. Skala, J. M. Squirrell, K. M. Vrotsos, V. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, and N. Ramanujam, "Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues," Cancer Res. 65, 1180-1186 (2005). [CrossRef] [PubMed]
  25. J. A. Palero, H. S. de Bruijn, A. van der Ploeg-van den Heuvel, H. Sterenborg, and H. C. Gerritsen, "In vivo nonlinear spectral imaging in mouse skin," Opt. Express 14, 4395-4402 (2006). [CrossRef] [PubMed]
  26. J. M. Piepmeier, C. Y. Liu, and E. Neuwelt, "Multiphoton excitation of autofluorescence for microscopy of glioma tissue - Comments," Neurosurgery 58, 767-767 (2006).
  27. J. A. Palero, H. S. de Bruijn, A. V. van den Heuvel, H. Sterenborg, and H. C. Gerritsen, "Spectrally resolved multiphoton imaging of in vivo and excised mouse skin tissues," Biophys. J. 93, 992-1007 (2007). [CrossRef] [PubMed]
  28. E. S. Lee, J. Y. Lee, and Y. S. Yoo, "Nonlinear optical interference of two successive coherent anti-Stokes Raman scattering signals for biological imaging applications," J. Biomed. Opt. 12, 5 (2007). [CrossRef]
  29. E. O. Potma, C. L. Evans, and X. S. Xie, "Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging," Opt. Lett. 31, 241-243 (2006). [CrossRef] [PubMed]
  30. I. Toytman, K. Cohn, T. Smith, D. Simanovskii, and D. Palanker, "Wide-field coherent anti-Stokes Raman scattering microscopy with non-phase-matching illumination," Opt. Lett. 32, 1941-1943 (2007). [CrossRef] [PubMed]
  31. W. Becker, A. Bergmann, M. A. Hink, K. Konig, K. Benndorf, and C. Biskup, "Fluorescence lifetime imaging by time-correlated single-photon counting," Microsc. Res. Technique 63, 58-66 (2004). [CrossRef]
  32. R. R. Duncan, A. Bergmann, M. A. Cousin, D. K. Apps, and M. J. Shipston, "Multi-dimensional time- correlated single photon counting (TCSPC) fluorescence lifetime imaging microscopy (FLIM) to detect FRET in cells," J. Microsc. 215, 1-12 (2004). [CrossRef] [PubMed]
  33. M. Peter, and S. M. Ameer-Beg, "Imaging molecular interactions by multiphoton FLIM," Biology of the Cell 96, 231-236 (2004). [CrossRef] [PubMed]
  34. K. Suhling, P. M. W. French, and D. Phillips, "Time-resolved fluorescence microscopy," Photochem. Photobiol. Sci. 4, 13-22 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited