OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 25 — Dec. 10, 2007
  • pp: 17151–17162

Flat-top surface plasmon-polariton modes guided by double-electrode structures

Jaewoong Yoon, Seok Ho Song, and Suntak Park  »View Author Affiliations


Optics Express, Vol. 15, Issue 25, pp. 17151-17162 (2007)
http://dx.doi.org/10.1364/OE.15.017151


View Full Text Article

Enhanced HTML    Acrobat PDF (444 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We characterize the frequency dependence of symmetrically-coupled long-range surface plasmon-polaritons (sc-LRSPPs) excited on double-electrode slab waveguides composed of five layers of insulator(I) and metal(M) stacked in order of IMIMI. When the core insulator has a refractive-index larger than the cladding ones, there is no cut-off core-thickness(D) for sc-LRSPP modes in all frequency range likely for modes in a conventional dielectric slab waveguide. At a specific frequency of ωc which depends on the index difference of insulator layers and the thickness of metal, the sc-LRSPP modes are non-dispersive at all for change in D. Furthermore, regardless of D alteration, the modes at ω=ωc consistently maintain a perfect flat-top profile in the core region and identical decay tails in the cladding. The sc-LRSPP modes with these prominent characteristics may excite an active medium sandwiched in between the metal layers very uniformly, therefore it will be interesting to implement such a non-dispersive flat-top mode for nonlinear applications of SPP waveguides.

© 2007 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: October 29, 2007
Revised Manuscript: November 29, 2007
Manuscript Accepted: November 29, 2007
Published: December 7, 2007

Citation
Jaewoong Yoon, Seok Ho Song, and Suntak Park, "Flat-top surface plasmon-polariton modes guided by double-electrode structures," Opt. Express 15, 17151-17162 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-17151


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Raether, Surface plasmons on Smooth and Rough Surfaces and on Gratings, (Springer-Verlag, Berlin, 1988).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, (Insight review articles) "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  3. R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phil. Mag. 4, 396 (1902).
  4. R. W. Wood, "Anomalous diffraction gratings," Phys. Rev. 48, 928-936 (1935). [CrossRef]
  5. U. Fano, "The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves)," J. Opt. Soc. Am. 31, 213-222 (1941). [CrossRef]
  6. S. Linden, J. Kuhl, and H. Giessen, "Controlling the interaction between light and gold nano particles: Selective suppression of extinction," Phys. Rev. Lett. 86, 4688 (2001). [CrossRef] [PubMed]
  7. E. Kretchmann and H. Raether, "Radiative decay of nonradiative surface plasmons excited by light," Z. Naturkorsch. A 23, 2135-2136 (1968).
  8. A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. 216, 398 (1968). [CrossRef]
  9. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sensors Actuat. B 54, 3-15 (1999). [CrossRef]
  10. E. Ozbay, (Review) "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006). [CrossRef] [PubMed]
  11. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltser, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003). [CrossRef] [PubMed]
  12. M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, Art. No. 137404 (2004). [CrossRef] [PubMed]
  13. J. R. Krenn and J.-C. Weeber, "Surface plasmon polaritons in metal stripes and wires," Phil. Trans. R. Soc. Lond. A 362, 739-756 (2004). [CrossRef]
  14. D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys, Rev. Lett. 47, 1927-1930 (1981). [CrossRef]
  15. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bounded modes of symmetric structures," Phys. Rev. B 61, 10484 (2000). [CrossRef]
  16. T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, "Polymer-based surface-plasmonpolariton stripe waveguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003). [CrossRef]
  17. P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, "Characterization of long-range surface-plasmonpolariton waveguides," J. Appl. Phys. 98, Art. No. 043109 (2005). [CrossRef]
  18. T. Nikolajsen, K. Leosson, S. I. Bozhevolnyi, "In-line extinction modulator based on long-range surface plasmon polaritons," Opt. Commun. 244, 455-459 (2005). [CrossRef]
  19. S. Park and S. H. Song, "Polymeric optical attenuator based on long range surface plasmon polaritons," Electron. Lett. 42, 402-404 (2006). [CrossRef]
  20. G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, "Thermally activated variable attenuation of longrange surface plasmon-polariton waves," J. Lightwave Technol. 24, 4391-4402 (2006). [CrossRef]
  21. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, "Integrated optical components utilizing long-range surface plasmon polaritons," J. Lightwave technol. 23, 413-422 (2005). [CrossRef]
  22. H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, "Vertical coupling of longrange surface plasmon polaritons," Appl. Phys. Lett. 88, Art. No. 011110 (2006). [CrossRef]
  23. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, "Passive integrated optics elements based on long-range surface plasmon polaritons," J. Lightwave Technol. 24, 477- 494 (2006). [CrossRef]
  24. A. Boltasseva, S. I. Bozhevolnyi, T. Søndergaard, T. Nikolajsen, and K. Leosson, "Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons," Opt. Express 13, 4237-4243 (2005). [CrossRef] [PubMed]
  25. S. J. Charbonneau, R. Charbonneau, N. Lahoud, G. A. Mattuissi, and P. Berini, "Bragg gratings based on long-range surface plasmon-polariton waveguides: Comparison of theory and experiment," IEEE J. Quantum Electron. 41, 1480-1491 (2005). [CrossRef]
  26. G. I. Stegeman and J. J. Burke, "Long-range surface-plasmons in electrode structures," Appl. Phys. Lett. 43, 221-223 (1983). [CrossRef]
  27. E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969). [CrossRef]
  28. E. D. Palik, Handbook of Optical Constants of Solids II, (Academic Press, San Diego, 1998).
  29. M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett. 93, Art. No. 137404 (2004). [CrossRef] [PubMed]
  30. U. Schröter and A. Dereux, "Surface plasmon polaritons on metal cylinders with dielectric core," Phys. Rev. B 64, Art. No. 125420 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited