OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 25 — Dec. 10, 2007
  • pp: 17214–17220

Near-field imaging and frequency tuning of a high-Q photonic crystal membrane microcavity

S. Mujumdar, A. F. Koenderink, T. Sünner, B. C. Buchler, M. Kamp, A. Forchel, and V. Sandoghdar  »View Author Affiliations

Optics Express, Vol. 15, Issue 25, pp. 17214-17220 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (719 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We discuss experimental studies of the interaction between a nanoscopic object and a photonic crystal membrane resonator of quality factor Q=55000. By controlled actuation of a glass fiber tip in the near field of the photonic crystal, we constructed a complete spatio-spectral map of the resonator mode and its coupling with the fiber tip. On the one hand, our findings demonstrate that scanning probes can profoundly influence the optical characteristics and the near-field images of photonic devices. On the other hand, we show that the introduction of a nanoscopic object provides a low loss method for on-command tuning of a photonic crystal resonator frequency. Our results are in a very good agreement with the predictions of a combined numerical/analytical theory.

© 2007 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(180.4243) Microscopy : Near-field microscopy
(130.4815) Integrated optics : Optical switching devices
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystal Cavities

Original Manuscript: October 8, 2007
Revised Manuscript: November 17, 2007
Manuscript Accepted: November 17, 2007
Published: December 10, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics
Physics and Applications of Microresonators (2007) Optics Express

S. Mujumdar, A. F. Koenderink, T. Sünner, B. C. Buchler, M. Kamp, A. Forchel, and V. Sandoghdar, "Near-field imaging and frequency tuning of a high-Q photonic crystal membrane microcavity," Opt. Express 15, 17214-17220 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution lambda/20," Appl. Phys. Lett. 44,651-653 (1984). [CrossRef]
  2. A. Lewis, M. Isaacson, A. Harootunian, and A. Murray, "Experimental strategy in three-dimensional structure determination of crotoxin complex thin crystal," Ultramicroscopy 13, 27-34, (1984). [CrossRef]
  3. V. Sandoghdar, "Trends and developments in scanning near-field optical microscopy," pp. 65-119, Nanometer Scale Science and Technology, (IOS Press, Amsterdam, 2001).
  4. W. P. Ambrose, P. M. Goodwin, J. C. Martin, and R. A. Keller, "Alterations of Single Molecule Fluorescence Lifetimes in Near-Field Optical Microscopy," Science 265, 364-367 (1994). [CrossRef] [PubMed]
  5. H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. van Hulst, "Influencing the Angular Emission of a Single Molecule," Phys. Rev. Lett. 85, 5312-5315 (2000). [CrossRef]
  6. I. Gerhardt, G. Wrigge, M. Agio, P. Bushev, G. Zumofen, and V. Sandoghdar, "Scanning near-field optical coherent spectroscopy of single molecules at 1.4K," Opt. Lett. 32, 1420-1422 (2007). [CrossRef] [PubMed]
  7. K. Vahala, "Optical Microcavities," Nature 424, 839 (2003). [CrossRef] [PubMed]
  8. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-Dimensional Photonic Band-Gap Defect Mode Laser," Science 284, 1819-1821 (1999). [CrossRef] [PubMed]
  9. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005). [CrossRef]
  10. R. Herrmann, T. Suenner, T. Hein, A. Löffler, M. Kamp, and A. Forchel, "Ultrahigh-quality photonic crystal cavity in GaAs," Opt. Lett. 31, 1229-1231 (2006). [CrossRef] [PubMed]
  11. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49-52 (2007). [CrossRef]
  12. C. M. Soukoulis, ed., Photonic band gap materials, (Kluwer, Dordrecht, 1996).
  13. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton University Press, Princeton, N.J., 1995).
  14. V. Sandoghdar, B. C. Buchler, P. Kramper, S. Götzinger, O. Benson, and M. Kafesaki, "Scanning near-field optical studies of photonic devices," Photonic Crystals (Wiley-VCH, Weinheim, Germany, 2004).
  15. M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers, and N. F. van Hulst, "Tracking Femtosecond Laser Pulses in Space and Time," Science 294, 1080-1082 (2000). [CrossRef]
  16. S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Søndergaard, and M. Kristensen, "Direct mapping of light propagation in photonic crystal waveguides," Opt. Commun. 212, 51-55 (2002). [CrossRef]
  17. P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. M¨uller, U. G¨osele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, "Near-field visualization of light confinement in a photonic crystal microresonator," Opt. Lett. 29, 174-176 (2004). [CrossRef] [PubMed]
  18. K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, "Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity," Phys. Rev. B 70, 081306R (2004). [CrossRef]
  19. R. Wüest, B.C. Buchler, D. Erni, R. Harbers, P. Strasser, A. F. Koenderink, F. Robin, V. Sandoghdar, and and H. Jäckel, "A standing-wave meter to measure dispersion and loss of photonic-crystal waveguides," Appl. Phys. Lett. 87, 261110 (2005). [CrossRef]
  20. N. Louvion, A. Rahmani, C. Seassal, S. Callard, D. Gerard, and F. de Fornel, "Near-field observation of subwavelength confinement of photoluminescence by a photonic crystal microcavity," Opt. Lett. 31, 2160-2162, (2006). [CrossRef] [PubMed]
  21. A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, " Controlling the resonance of a Photonic Crystal Microcavity by a near-field probe," Phys. Rev. Lett. 95, 153904 (2005). [CrossRef] [PubMed]
  22. I. Märki, M. Salt, and H.-P. Herzig, "Tuning the resonance of a photonic crystal microcavity with an AFM probe," Opt. Express 14, 2969-2978 (2006). [CrossRef] [PubMed]
  23. W. C. L. Hopman, K. O. van der Werf, A. J. F. Hollink, W. Bogaerts, V. Subramaniam, and R. M. de Ridder, "Nano-mechanical tuning and imaging of a photonic crystal micro-cavity resonance," Opt. Express 14, 8745-8752 (2006). [CrossRef] [PubMed]
  24. L. Lalouat, B. Cluzel, P. Velha, E. Picard, D. Peyrade, J. P. Hugonin, P. Lalanne, E. Hadji, and F. de Fornel, "Near-field interactions between a subwavelength tip and a small-volume photonic-crystal nanocavity," Phys. Rev. B 76, 041102(R) (2007). [CrossRef]
  25. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944 (2003). [CrossRef] [PubMed]
  26. K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, "Experimental demonstration of a high quality factor photonic crystal microcavity," Appl. Phys. Lett. 83, 1915-1917 (2003). [CrossRef]
  27. E. Weidner, S. Combrié, N. Tran, A. DeRossi, J. Nagle, S. Cassette, A. Talneau, and H. Benisty, "Achievement of ultrahigh quality factors in GaAs photonic crystal membrane nanocavity," Appl. Phys. Lett. 89, 221104 (2006). [CrossRef]
  28. T. Skauli, P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi, L. A. Eyres, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn and E. Lallier, "Improved dispersion relations for GaAs and applications to nonlinear optics," J. Appl. Phys. 94, 6447-6455 (2003). [CrossRef]
  29. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method. -3rd ed. (Artech House, Norwood, MA, 2005).
  30. S. Fan, I. Appelbaum, and J. D. Joannopoulos, "Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: A computational study," Appl. Phys. Lett. 75, 3461-3463 (1999). [CrossRef]
  31. Q1. O. Hess, C. Hermann, and A. Klaedtke, "Finite-difference time-domain simulations of photonic crystal defect structures," Phys. Status Solidi A 197, 605-619 (2003). [CrossRef]
  32. M. Loncar, A. Scherer, and Y. Qiu, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett. 82, 4648-4650 (2003). [CrossRef]
  33. M. Barth and O. Benson, "Manipulation of dielectric particles using photonic crystal cavities," Appl. Phys. Lett. 89, 253114 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited