OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 25 — Dec. 10, 2007
  • pp: 17221–17230

Polarized quantum dot emission from photonic crystal nanocavities studied under mode-resonant enhanced excitation

R. Oulton, B.D. Jones, S. Lam, A.R.A. Chalcraft, D. Szymanski, D. O’Brien, T.F. Krauss, D. Sanvitto, A.M. Fox, D.M. Whittaker, M. Hopkinson, and M.S. Skolnick  »View Author Affiliations

Optics Express, Vol. 15, Issue 25, pp. 17221-17230 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1058 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the linear polarization of the emission from single quantum dots embedded in an “L3” defect nanocavity in a two-dimensional photonic crystal. By using narrow linewidth optical excitation in resonance with higher-order modes, we are able to achieve strong quantum dot emission intensity whilst reducing the background from quantum dots in the surrounding lattice. We find that all the dots observed emit very strongly linearly polarized light of the same orientation as the closest mode, despite the fact that these quantum dots may be spectrally detuned by several times the mode linewidth. We discuss the coupling mechanisms which may explain this behavior.

© 2007 Optical Society of America

OCIS Codes
(230.5298) Optical devices : Photonic crystals
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Photonic Crystal Cavities

Original Manuscript: October 8, 2007
Revised Manuscript: November 19, 2007
Manuscript Accepted: November 19, 2007
Published: December 10, 2007

Virtual Issues
Physics and Applications of Microresonators (2007) Optics Express

R. Oulton, B. D. Jones, S. Lam, A. R. A. Chalcraft, D. Szymanski, D. O'Brien, T. F. Krauss, D. Sanvitto, A. M. Fox, D. M. Whittaker, M. Hopkinson, and M. S. Skolnick, "Polarized quantum dot emission from photonic crystal nanocavities studied under moderesonant enhanced excitation," Opt. Express 15, 17221-17230 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Vahala, "Optical Microcavities," Nature 424, 839-846 (2003) and references therein. [CrossRef] [PubMed]
  2. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004). [CrossRef] [PubMed]
  3. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke and A. Forchel1, "Strong coupling in a single quantum dot-semiconductor microcavity system," Nature 432, 197-200 (2004) [CrossRef] [PubMed]
  4. E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, "Exciton-Photon Strong-Coupling Regime for a Single Quantum Dot Embedded in a Microcavity," Phys. Rev. Lett 95,067401-067404 (2005). [CrossRef] [PubMed]
  5. Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, S. Noda, "Dynamic control of the Q-factor in a Photonic Crystal Nanocavity," Nature Materials 6, 862-865 (2007). [CrossRef] [PubMed]
  6. Y. Akahane, T. Asano, B.-S. Song, S. Noda, "High-Q nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003). [CrossRef] [PubMed]
  7. A. Faraon, D. Englund, I. Fushman J. Vučković, "Local quantum dot tuning on Photonic Crystal Chips," Appl. Phys. Lett. 90, 213110-213113 (2007). [CrossRef]
  8. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, A. Imamoğlu "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007). [CrossRef] [PubMed]
  9. A. Chalcraft, S. Lam, D O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H.-Y. Liu, and M. Hopkinson, "Mode structure of the L3 photonic crystal cavity," Appl. Phys. Lett. 90, 241117-241119 (2007). [CrossRef]
  10. D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel, Y. Yamamoto, "Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime," Phys. Rev. Lett 98, 117402-117405 (2007). [CrossRef] [PubMed]
  11. M. Kaniber, A. Kress, A. Laucht, M. Bichler, R. Meyer, M.-C. Amann and J.J. Finley, "Efficient spatial redistribution of quantum dot spontaneous emission from two-dimensional photonic crystals," Appl. Phys. Lett. 91, 061106-061108 (2007). [CrossRef]
  12. M. Nomura, S. Iwamoto, T. Nakaoka, S. Ishida and Y. Arakawa, "Localised excitation of InGaAs quantum dots by utilizing a photonic crystal nanocavity," Appl. Phys. Lett,  88, 141108-141110 (2006). [CrossRef]
  13. M. Nomura, S. Iwamoto, T. Nakaoka, S. Ishida and Y. Arakawa, "Cavity resonant excitation of InGaAs quantum dots in photonic crystal nanocavities," Jpn. J. Appl. Phys 45, 6091-6095 (2006). [CrossRef]
  14. W. C. Stumpf, M. Fujita, M. Yamaguchi, T. Asano, S. Noda, "Light-emission properties of quantum dots embedded in a photonic double-heterostructure nanocavity," Appl. Phys. Lett,  90, 231101-231103 (2007). [CrossRef]
  15. D. M. Whittaker, I. S. Culshaw, V. N. Astratov, and M. S. Skolnick, "Photonic bandstructure of patterned waveguides with dielectric and metallic cladding," Phys. Rev. B 65,073102-073105 (2002). [CrossRef]
  16. L. C. Andreani and D. Gerace, "Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method," Phys. Rev. B 73, 235114-235130 (2006). [CrossRef]
  17. M. Nomura, S. Iwamoto, T. Yang, S. Ishida and Y. Arakawa, "Enhancement of light emission from single quantum dot in photonic crystal nanocavity by using cavity resonant excitation," Appl. Phys Lett 89, 241124-241126 (2006). [CrossRef]
  18. A. Vasanelli, R. Ferreira, and G. Bastard, "Continuous absorption background and decoherence in quantum dots," Phys. Rev. Lett. 89, 216804-216807 (2002). [CrossRef] [PubMed]
  19. R. Oulton, J. J. Finley, A. Tartakovskii, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, A. Vasanelli, R. Ferreira, and G. Bastard, "Continuum transitions and phonon coupling in single self-assembled Stranski-Krastanow quantum dots," Phys. Rev. B 68, 235301-235304 (2003). [CrossRef]
  20. M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, "Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots," Phys. Rev. B 65, 195315-195338 (2002). [CrossRef]
  21. A. Daraei, D. Sanvitto, J. A. Timpson, A. M. Fox, D. M. Whittaker, M. S. Skolnick, P. S. S. Guimarães, H. Vinck, A. Tahraoui, P. W. Fry, S. L. Liew and M. Hopkinson, "Control of polarization and mode mapping of small volume high Q micropillars," J. Appl. Phys. 102, 043105-043110 (2007). [CrossRef]
  22. J. A. Timpson, D. Sanvitto, A. Daraei, P. S. S. Guimarães, A. Tahraoui, P. W. Fry, M. Hopkinson, D. M.  Whittaker, A. M. Fox, and M. S. Skolnick, "Polarization control and emission enhancement of a quantum dot in ultra-high finesse microcavity pillars," Physica E 32, 500-503 (2006). [CrossRef]
  23. M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel "Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Structured Microresonators," Phys. Rev. Lett.  86, 3168-3171 (2001) [CrossRef] [PubMed]
  24. A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. J. Krenner, R. Meyer, G. Böhm, and J. J. Finley "Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals," Phys. Rev. B 71, 241304(R)-241307 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited