OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 25 — Dec. 10, 2007
  • pp: 17231–17240

Modification of visible spontaneous emission with silicon nitride photonic crystal nanocavities

Michael Barth, Josef Kouba, Johannes Stingl, Bernd Löchel, and Oliver Benson  »View Author Affiliations


Optics Express, Vol. 15, Issue 25, pp. 17231-17240 (2007)
http://dx.doi.org/10.1364/OE.15.017231


View Full Text Article

Enhanced HTML    Acrobat PDF (653 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photonic crystal (PC) nanocavities based on silicon nitride membranes are studied as tools for the manipulation of spontaneous emission in the wavelength range between 550 nm and 800 nm. We observe a strong modification of the fluorescence spectrum of dye molecules spin-cast on top of the PC, indicating an efficient coupling of the dye emission to the cavity modes. The cavity design is optimized with respect to the quality factor and values of nearly 1500 are achieved experimentally. Taking into account the small mode volume, which leads to a strong Purcell enhancement, these nanocavities enable the realization of efficient single photon sources in the visible region of the spectrum. Furthermore, their fabrication is fully compatible with existing CMOS technology, making an integration into more complex optoelectronic devices feasible.

© 2007 Optical Society of America

OCIS Codes
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(230.3990) Optical devices : Micro-optical devices
(230.4000) Optical devices : Microstructure fabrication
(230.5750) Optical devices : Resonators
(230.6080) Optical devices : Sources
(300.2140) Spectroscopy : Emission

ToC Category:
Photonic Crystal Cavities

History
Original Manuscript: September 21, 2007
Revised Manuscript: October 24, 2007
Manuscript Accepted: October 24, 2007
Published: December 10, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics
Physics and Applications of Microresonators (2007) Optics Express

Citation
Michael Barth, Josef Kouba, Johannes Stingl, Bernd Löchel, and Oliver Benson, "Modification of visible spontaneous emission with silicon nitride photonic crystal nanocavities," Opt. Express 15, 17231-17240 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-17231


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004). [CrossRef] [PubMed]
  2. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007). [CrossRef] [PubMed]
  3. A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. L. Hu, P. M. Petroff, and A. Imamoğlu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005). [CrossRef] [PubMed]
  4. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoda, Y. Arakawa, Y. Yamamoto, and J. Vučković, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005). [CrossRef] [PubMed]
  5. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999). [CrossRef] [PubMed]
  6. K. Nozaki, S. Kita, and T. Baba, "Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser," Opt. Express 15, 7506-7514 (2007). [CrossRef] [PubMed]
  7. S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lemaître, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, and I. Abram, "Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity," Appl. Phys. Lett. 87, 163107 (2005). [CrossRef]
  8. J. Vučković, D. Englund, D. Fattal, E. Waks, and Y. Yamamoto, "Generation and manipulation of nonclassical light using photonic crystals," Physica E 32, 466-470 (2006). [CrossRef]
  9. T. D. Happ, I. I. Tartakovskii, V. D. Kulakovskii, J.-P. Reithmaier, M. Kamp, and A. Forchel, "Enhanced light emission of InxGa1−xAs quantum dots in a two-dimensional photonic-crystal defect microcavity," Phys. Rev. B 66, 041303(R) (2002). [CrossRef]
  10. A. Kress, F. Hofbauer, N. Reinelt,M. Kaniber, H. J. Krenner, R.Meyer, G. B¨ohm, and J. J. Finley, "Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals," Phys. Rev. B 71, 241304(R) (2005). [CrossRef]
  11. W.-Y. Chen, W.-H. Chang, H.-S. Chang, T. M. Hsu, C.-C. Lee, C.-C. Chen, P. G. Luan, J.-Y. Chang, T.-P. Hsieh, and J.-I. Chyi, "Enhanced light emission from InAs quantum dots in single-defect photonic crystal microcavities at room temperature," Appl. Phys. Lett. 87, 071111 (2005). [CrossRef]
  12. I. Fushman, D. Englund, and J. Vučković, "Coupling of PbS quantum dots to photonic crystal cavities at room temperature," Appl. Phys. Lett. 87, 241102 (2005). [CrossRef]
  13. D. G. Gevaux, A. J. Bennett, R. M. Stevenson, A. J. Shields, P. Atkinson, J. Griffiths, D. Anderson, G. A. C. Jones, and D. A. Ritchie, "Enhancement and suppression of spontaneous emission by temperature tuning InAs quantum dots to photonic crystal cavities," Appl. Phys. Lett. 88, 131101 (2006). [CrossRef]
  14. J. S. Xia, Y. Ikegami, Y. Shiraki, N. Usami, and Y. Nakata, "Strong resonant luminescence from Ge quantum dots in photonic crystal microcavity at room temperature," Appl. Phys. Lett. 89, 201102 (2006). [CrossRef]
  15. R. Bose, X. Yang, R. Chatterjee, J. Gao, and C. W. Wong, "Weak coupling interactions of colloidal lead sulfide nanocrystals with silicon photonic crystal nanocavities near 1.55 μm at room temperature," Appl. Phys. Lett. 90, 111117 (2007). [CrossRef]
  16. Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, "Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity," Appl. Phys. Lett. 90, 171105 (2007). [CrossRef]
  17. C. Meier, K. Hennessy, E. D. Haberer, R. Sharma, Y.-S. Choi, K. McGroddy, S. Keller, S. P. DenBaars, S. Nakamura, and E. L. Hu, "Visible resonant modes in GaN-based photonic crystal membrane cavities," Appl. Phys. Lett. 88, 031111 (2006). [CrossRef]
  18. Y.-S. Choi, K. Hennessy, R. Sharma, E. Haberer, Y. Gao, S. P. DenBaars, S. Nakamura, E. L. Hu, and C. Meier, "GaN blue photonic crystal membrane nanocavities," Appl. Phys. Lett. 87, 243101 (2005). [CrossRef]
  19. M. Arita, S. Ishida, S. Kako, S. Iwamoto, and Y. Arakawa, "AlN air-bridge photonic crystal nanocavities demonstrating high quality factor," Appl. Phys. Lett. 91, 051106 (2007). [CrossRef]
  20. Z. Zhang, T. Yoshie, X. Zhu, J. Xu, and A. Scherer, "Visible two-dimensional photonic crystal slab laser," Appl. Phys. Lett. 89, 071102 (2006). [CrossRef]
  21. M. Kitamura, S. Iwamoto, and Y. Arakawa, "Enhanced light emission from an organic photonic crystal with a nanocavity," Appl. Phys. Lett. 87, 151119 (2005). [CrossRef]
  22. M. Makarova, J. Vuˇckovi´c, H. Sanda, and Y. Nishi, "Silicon-based photonic crystal nanocavity light emitters," Appl. Phys. Lett. 89, 221101 (2006). [CrossRef]
  23. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003). [CrossRef] [PubMed]
  24. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "Fine-tuned high-Q photonic-crystal nanocavity," Opt. Express 13, 1202-1214 (2005). [CrossRef] [PubMed]
  25. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).
  26. T. Asano, B.-S. Song, and S. Noda, "Analysis of the experimental Q-factors (~ 1 million) of photonic crystal nanocavities," Opt. Express 14, 1996-2002 (2006). [CrossRef] [PubMed]
  27. Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, "Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes," Appl. Phys. Lett. 82, 1661-1663 (2003). [CrossRef]
  28. M.-K. Kim, J.-K. Yang, Y.-H. Lee, and I.-K. Hwang, "Influence of etching slope on two-dimensional photonic crystal slab resonators," J. Korean Phys. Soc. 50, 1027-1031 (2007). [CrossRef]
  29. A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, "Single photon quantum cryptography," Phys. Rev. Lett. 89, 187901 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited