OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 25 — Dec. 10, 2007
  • pp: 17380–17391

Guiding optical modes in chains of dielectric particles

Gail S. Blaustein, Michael I. Gozman, Olga Samoylova, I. Ya. Polishchuk, and Alexander L. Burin  »View Author Affiliations

Optics Express, Vol. 15, Issue 25, pp. 17380-17391 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (149 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have investigated low frequency guiding polariton modes in finite linear chains of closely packed dielectric spherical particles of different optical materials. These guiding (chain bound) modes cannot decay radiatively, because photon emission cannot take place with simultaneous conservation of energy and momentum. For extending previous work on infinite chains of spherical particles[1] and infinite rods[2, 3], we were able to apply the multisphere Mie scattering formalism to finite chains of dielectric particles to calculate quality factors of most bound modes originating from the first two Mie resonances depending on the number of particles N and the material’s refractive index n r . We found that, in agreement with the earlier work [4], guiding modes exist for n r >2 and the quality factor of the most bound mode scales by N3. We interpreted this behavior as the property of “frozen” modes near the edges of guiding bands with group velocity vanishing as N increases. In contrast with circular arrays, longitudinal guiding modes in particle chains possess a higher quality factor compared to the transverse ones.

© 2007 Optical Society of America

OCIS Codes
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Novel Concepts and Theory

Original Manuscript: October 8, 2007
Revised Manuscript: November 9, 2007
Manuscript Accepted: November 9, 2007
Published: December 10, 2007

Virtual Issues
Physics and Applications of Microresonators (2007) Optics Express

Gail S. Blaustein, Michael I. Gozman, Olga Samoylova, I. Ya. Polishchuk, and Alexander L. Burin, "Guiding optical modes in chains of dielectric particles," Opt. Express 15, 17380-17391 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Shore and A. D. Yaghjian, "Traveling electromagnetic waves on linear periodic arrays of lossless spheres," Electron. Lett. 41,578-580 (2005). [CrossRef]
  2. S. Fan, J. N. Winn, A. Devenyi, J. C. Chen, R. D. Meade and J. D. Joannopoulos, "Guided and defect modes in periodic dielectric waveguides," J. Opt. Soc. Am. B 12,1267-72 (1995). [CrossRef]
  3. R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B 48,8434 (1993). [CrossRef]
  4. A. L. Burin, "Bound whispering gallery modes in circular arrays of dielectric spherical particles," Phys. Rev. E 73,066614 (2006). [CrossRef]
  5. Z. Y. Tang and N. A. Kotov, "One-dimensional assemblies of nanoparticles: Preparation, properties, and promise," Adv. Mater. 17,951-962 (2005). [CrossRef]
  6. S. A. Mayer, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2,229-232 (2003). [CrossRef]
  7. S. A. Mayer, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, B. E. Koel, and H. A. Atwater, "Plasmonics A route to nanoscale optical devices," Adv. Mater. 15,562-562 (2003). [CrossRef]
  8. C. Kittel, Introduction to Solid State Physics, (Wiley, New York, 1996).
  9. H. W. Ehrespeck and H. Poehler, "A new method for obtaining maximum gain from Yagi antennas," IEEE Trans. Antennas Propag. AP- 7,379-386 (1959).
  10. R. W. P. King, G. J. Fikioris, and R. B. Mask, Cylindrical Antennas and Arrays, (Cambridge University Press, Cambridge, 2005).
  11. A. L. Burin, G. C. Schatz, H. Cao, and M. A. Ratner, "High quality optical modes in low-dimensional arrays of nanoparticles. Application to random lasers," J. Opt. Soc. Am. B 21,121-131 (2004). [CrossRef]
  12. Y. Hara, "Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres," Phys. Rev. Lett. 94, Art. No. 203905 (2005). [CrossRef] [PubMed]
  13. A.M. Kapitonov and V. N. Astratov, "Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities," Opt. Lett. 32,409-411 (2007). [CrossRef] [PubMed]
  14. A. V. Kanaev, V. N. Astratov, and W. Cai, "Optical coupling at a distance between detuned spherical cavities," Appl. Phys. Lett. 88, Art. No. 111111 (2006). [CrossRef]
  15. V. N. Astratov, J. P. Franchak, and S. P. Ashili, "Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder," Appl. Phys. Lett. 85,5508 (2004). [CrossRef]
  16. L. I. Deych and O. Roslyak, "Photonic band mixing in linear chains of optically coupled microspheres," Phys. Rev. B 73, art no 036606 (2006)
  17. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438,65-69 (2005). [CrossRef] [PubMed]
  18. P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S.-W. Chang, and S.-L. Chuang, "Slow light in semiconductor quantum wells," Opt. Lett. 29,22912293 (2004). [CrossRef]
  19. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and slow light propagation in a room-temperature solid," Science 301,200202 (2003). [CrossRef]
  20. J. T. Mok and B. J. Eggleton, "Expect more delays," Nature 433,811812 (2005). [CrossRef]
  21. J. T. Shen, M. L. Povinelli, S. Sandhu, and S. H. Fan, "Stopping single photons in one-dimensional circuit quantum electrodynamics systems," Phys. Rev. B 75, Art. No. 035320, (2007). [CrossRef]
  22. A. Figotin and I. Vitebskiy, "Frozen light in photonic crystals with degenerate band edge," Phys. Rev. E 74, Art. No. 066613 (2006). [CrossRef]
  23. Y. L. Xu, "Electromagnetic scattering by an aggregate of spheres: far field," Appl. Opt. 36,9496-9508 (1997). [CrossRef]
  24. Y. L. Xu, "Scattering Mueller matrix of an ensemble of variously shaped small particles," J. Opt. Soc. Am. A 20,2093-2105 (2003). [CrossRef]
  25. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-DifferenceTtime-Domain Method, 3rd ed. (Artech House Publishers, 2005).
  26. E. D. Palik, Handbook of Optical Constants in Solids, (Acad. Press Handbook Series, Academic Press INC. 1985).
  27. E. I. Smotrova and A. I. Nosich, "Mathematical study of the two-dimensional lasing problem for the whisperinggallery modes in a circular dielectric microcavity," Opt. Quantum Electron. 36,213-221 (2004). [CrossRef]
  28. S. V. Boriskina, "Theoretical prediction of a dramatic Q-factor enhancement and degeneracy removal of WG modes in symmetrical photonic molecules," Opt. Lett. 31,338-340 (2006). [CrossRef] [PubMed]
  29. J. M. Bendickson, J. P. Dowling, and M. Scalora, "Analytic expressions for the electromagnetic mode density in finite one-dimensional, photonic band-gap structures," Phys. Rev. B 53,4107-4121 (1996). [CrossRef]
  30. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band-edge laser a new approach to gain enhancement," J. Appl. Phys. 75,1896-1899 (1994). [CrossRef]
  31. L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, (Pergamon Press, Oxford, New York, 1977).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited