OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 25 — Dec. 10, 2007
  • pp: 17401–17409

On fundamental quantum noises of whispering gallery mode electro-optic modulators

Andrey B. Matsko, Anatoliy A. Savchenkov, Vladimir S. Ilchenko, David Seidel, and Lute Maleki  »View Author Affiliations

Optics Express, Vol. 15, Issue 25, pp. 17401-17409 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (115 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using the example of whispering gallery mode (WGM) electro-optic modulator (EOM) we show that the majority of phase EOMs, particularly the resonant types, introduce additional quantum noise to the modulated light. The noise power grows quadratically with the optical power and results from the unavoidable spontaneous emission process originating from the strongly nondegenerate parametric interaction. This latter process is the physical basis for modulation.

© 2007 Optical Society of America

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(230.2090) Optical devices : Electro-optical devices
(230.4110) Optical devices : Modulators
(230.5750) Optical devices : Resonators

ToC Category:
Novel Concepts and Theory

Original Manuscript: September 25, 2007
Revised Manuscript: November 13, 2007
Manuscript Accepted: November 13, 2007
Published: December 10, 2007

Virtual Issues
Physics and Applications of Microresonators (2007) Optics Express

Andrey B. Matsko, Anatoliy A. Savchenkov, Vladimir S. Ilchenko, David Seidel, and Lute Maleki, "On fundamental quantum noises of whispering gallery mode electro-optic modulators," Opt. Express 15, 17401-17409 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. I. Gordon and J. D. Rigden, "Fabry-Perot electro-optic modulator," Bell System Tech. J. 42, 155-179 (1963).
  2. R. C. Alferness, "Waveguide electro-optic modulators," IEEE Trans. Microwave Theor. and Techniques 30, 1121-1137 (1982). [CrossRef]
  3. K. P. Ho and J. M. Kahn, "Optical frequency comb generator using phase modulation in amplified circulating loop", IEEE Photon. Technol. Lett. 5, 721-725 (1993). [CrossRef]
  4. T. Kawanishi, S. Oikawa, K. Higuma, Y. Matsuo, and M. Izutsu, "LiNbO3 resonant-type optical modulator with double-stub structure," Electron. Lett. 37, 12441246 (2001).
  5. I. L. Gheorma and R. M. Osgood, "Fundamental limitations of optical resonator based high-speed EO modulators," IEEE Photon. Technol. Lett. 14, 795-797 (2002). [CrossRef]
  6. M. Kato, K. Fujiura, and T. Kurihara, "Generation of super-stable 40 GHz pulses from Fabry-Perot resonator integrated with electro-optic phase modulator," Electron. Lett. 40, 299-301 (2001). [CrossRef]
  7. N. Benter, R. P. Bertram, E. Soergel, K. Buse, D. Apitz, L. B. Jacobsen, and P. M. Johansen, "Large-area Fabry-Perot modulator based on electro-optic polymers," Appl. Opt. 44, 6235-6239 (2005). [CrossRef] [PubMed]
  8. M. Kato, K. Fujiura, T. Kurihara, "Generation of a superstable Lorentzian pulse train with a high repetition frequency based on a Fabry-Perot resonator integrated with an electro-optic phase modulator," Appl. Opt. 44, 1263-1269 (2005). [CrossRef] [PubMed]
  9. V. S. Ilchenko, X. S. Yao, and L. Maleki, "Microsphere integration in active and passive photonics devices," Proc. SPIE 3930, 154-162 (2000). [CrossRef]
  10. V. S. Ilchenko and L. Maleki, "Novel whispering-gallery resonators for lasers, modulators, and sensors," Proc. SPIE 4270, 120-130 (2001). [CrossRef]
  11. D. A. Cohen, M. Hossein-Zadeh, and A. F. J. Levi, "Microphotonic modulator for microwave receiver," Electron. Lett. 37, 300-301 (2001). [CrossRef]
  12. D. A. Cohen, M. Hossein-Zadeh, and A. F. J. Levi, "High-Q microphotonic electro-optic modulator," Solid State Electron. 45, 1577-1589 (2001). [CrossRef]
  13. D. A. Cohen and A. F. J. Levi, "Microphotonic millimetr-wave receiver architecture," Electron. Lett. 37, 37-39 (2001). [CrossRef]
  14. D. A. Cohen and A. F. J. Levi, "Microphotonic components for a mm-wave receiver," Solid State Electron. 45, 495-505 (2001). [CrossRef]
  15. P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton, "Polymer micro-ring filters and modulators," J. Lightwave Technol. 20, 1968-1975 (2002). [CrossRef]
  16. L. Maleki, A. F. J. Levi, S. Yao, and V. Ilchenko, "Light modulation in whispering-gallery-mode resonators," US papent 6,473,218 (2002).
  17. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, "Sub-microWatt photonic microwave receiver," IEEE Photon. Technol. Lett. 14, 1602-1604 (2002). [CrossRef]
  18. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, "Whispering gallery mode electro-optic modulator and photonic microwave receiver," J. Opt. Soc. Am. B 20, 333-342 (2003). [CrossRef]
  19. M. A. J. Weldon, S. V. Hum, R. J. Davies, and M. Okoniewski, "Traveling-wave ring circuit for resonant enhancement of electrooptic modulators," IEEE Photon. Technol. Lett. 161295-1297 (2004). [CrossRef]
  20. M. Hossein-Zadeh, and A. F. J. Levi, "Self-homodyne RF-optical LiNbO3 microdisk receiver," Solid State Electron. 49, 1428-1434 (2005). [CrossRef]
  21. H. Tazawa and W. H. Steier, "Linearity of ring resonator-based electrooptic polymer modulator," Electron. Lett. 41, 12971298 (2005). [CrossRef]
  22. M. Hossein-Zadeh, and A. F. J. Levi, "14.6-GHz LiNbO3 microdisk photonic self-homodyne RF receiver," IEEE Trans. Microwave Theory Tech. 54, 821-831 (2006). [CrossRef]
  23. H. Tazawa, W. H. Steier "Analysis of ring resonator-based traveling-wave modulators," IEEE Photon. Technol. Lett. 18, 211-213 (2006). [CrossRef]
  24. H. Tazawa, Y. H. Kuo, I. Dunayevskiy, J. D. Luo, A. K.-Y. Jen, H. R. Fetterman, and W. H. Steier, "Ring resonator-based electrooptic polymer traveling-wave modulator," J. Lightwave Technology 24, 3514-3519 (2006). [CrossRef]
  25. S. Li, F. Yi, X. M. Zhang, and S. L. Zheng, "Optimized electrode structure for a high-Q electro-optic microdisk-based optical phase modulator," Microwave Opt. Technol. Lett. 49, 313-316 (2007). [CrossRef]
  26. B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. D. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, "Electrooptic polymer ring resonator modulation up to 165 GHz," IEEE J. Sel. Top. Quantum Electron. 13, 104-110 (2007). [CrossRef]
  27. A. B. Matsko, V. S. Ilchenko, A. A. Savchenkov, and L. Maleki, "Highly nondegenerate all-resonant optical parametric oscillator," Phys. Rev. A 66, 043814 (2002). [CrossRef]
  28. E. A. Mishkin and D. F. Walls, "Quantum statistics of three interacting boson field modes," Phys. Rev. 185, 1618-1628 (1969). [CrossRef]
  29. V. B. Braginsky, S. E. Strigin, and S. P. Vyatchanin, "Parametric oscillatory instability in Fabry-Perot interferometer," Phys. Lett A 287, 331-338 (2001). [CrossRef]
  30. V. B. Braginsky and S. P. Vyatchanin, "Low quantum noise tranquilizer for Fabry-Perot interferometer", Phys. Lett A 293, 228-234 (2002). [CrossRef]
  31. B. S. Sheard, M. B. Gray, C. M. Mow-Lowry, D. E. McClelland, and S. E. Whitcomb, "Observation and characterization of an optical spring," Phys. Rev. A 69, 051801 (2004). [CrossRef]
  32. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, "Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity," Phys. Rev. Lett. 95, 033901 (2005). [CrossRef] [PubMed]
  33. H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, "Radiation-pressure-driven micro-mechanical oscillator," Opt. Express 13, 5293-5301 (2005). [CrossRef] [PubMed]
  34. T. Corbitt, D. Ottaway, E. Innerhofer, J. Pelc, N. Mavalvala, "Measurement of radiation-pressure-induced opto-mechanica dynamics in a suspended Fabry-Perot cavity," Phys. Rev. A 74, 021802 (2006). [CrossRef]
  35. E. DAmbrosio and W. Kells, "Considerations on parametric instability in Fabry Perot interferometer," Phys. Lett. A 299, 326-330 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited