OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 26 — Dec. 24, 2007
  • pp: 17570–17576

Methane detection at 1670-nm band using a hollow-core photonic bandgap fiber and a multiline algorithm

A. M. Cubillas, M. Silva-Lopez, J. M. Lazaro, O. M. Conde, M. N. Petrovich, and J. M. Lopez-Higuera  »View Author Affiliations


Optics Express, Vol. 15, Issue 26, pp. 17570-17576 (2007)
http://dx.doi.org/10.1364/OE.15.017570


View Full Text Article

Enhanced HTML    Acrobat PDF (453 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The long interaction pathlengths provided by hollow-core photonic bandgap fibers (HC-PBFs) are especially advantageous for the detection of weakly absorbing gases such as methane (CH4). In this paper, we demonstrate methane sensing with a 1670-nm band HC-PBF. A multiline algorithm is used to fit the R(6) manifold (near 1645 nm) and, in this way, to measure the gas concentration. With this method, a minimum detectivity of 10 ppmv for the system configuration was estimated.

© 2007 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(230.3990) Optical devices : Micro-optical devices
(300.1030) Spectroscopy : Absorption

ToC Category:
Photonic Crystal Fibers

History
Original Manuscript: October 10, 2007
Revised Manuscript: November 21, 2007
Manuscript Accepted: November 21, 2007
Published: December 11, 2007

Citation
A. M. Cubillas, M. Silva-Lopez, J. M. Lazaro, O. M. Conde, M. N. Petrovich, and J. M. Lopez-Higuera, "Methane detection at 1670-nm band using a hollow-core photonic bandgap fiber and a multiline algorithm," Opt. Express 15, 17570-17576 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-26-17570


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. Lopez-Higuera, Handbook of Optical Fibre Sensing Technology (John Wiley & Sons New York, 2002).
  2. T. A. Birks, P. J. Roberts, P.St. J. Russel, D. M. Atkin, T. J. Sheperd, "Full 2D photonic band gaps in silica/air structures," Electron. Lett. 311941-1943 (1995). [CrossRef]
  3. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999). [CrossRef] [PubMed]
  4. F. Benabid, "Hollow-core photonic bandgap fibre: new light guidance for new science and technology," Phil. Trans. R. Soc. A 364, 3439-3462 (2006). [CrossRef] [PubMed]
  5. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sorensen, T. P. Hansen, H. R. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12, 4080-4087 (2004). [CrossRef] [PubMed]
  6. L. W. Kornaszewski, N. Gayraud, J. M. Stone, W. N. MacPherson, A .K. George, J. C. Knight, D. P. Hand, and D. T. Reid, "Mid-infrared methane detection in a photonic bandgap fiber using a broadband optical parametric oscillator," Opt. Express 15, 11219-11224 (2007). [CrossRef] [PubMed]
  7. A. M. Cubillas, J. M. Lazaro, M. Silva-Lopez, O. M. Conde, M. Petrovich, and J. M. Lopez-Higuera, High sensitive methane sensor based on a photonic bandgap fiber, Postdeadline EWOFS’07 (2007).
  8. J. Henningsen, J. Hald, and J. C. Petersen, "Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers," Opt. Express 13, 10475-10482 (2005). [CrossRef] [PubMed]
  9. R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L. Weaver, and K. L. Corwin, "Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber," Opt. Lett. 31, 2489-2491 (2006). [CrossRef] [PubMed]
  10. J. Tuominen, T. Ritari, H. Ludvigsen, and J. C. Petersen, "Gas filled photonic bandgap fibers as wavelength references," Opt. Commun. 255, 272-277 (2005). [CrossRef]
  11. F. Couny, P. S. Light, F. Benabid, P. St. J. Russell, "Electromagnetically induced transparency and saturable absorption in all-fiber devices based on 12C2H2-filled hollow-core photonic crystal fiber," Opt. Commun. 263, 28-31 (2006). [CrossRef]
  12. B. Culshaw, G. Stewart, F. Dong, C. Tandy, D. Moodie, "Fibre optic techniques for remote spectroscopic methane detection," Sens. Act. B 51, 25-37 (1998). [CrossRef]
  13. M. Gharavi and S. G. Buckley, "Diode laser absorption spectroscopy measurement of linestrengths and pressure broadening coefficients of the methane 2?3 band at elevated temperatures," J. Mol. Spectrosc. 229, 78-88 (2005). [CrossRef]
  14. L. S. Rothman, et al., "The HITRAN 2004 molecular spectroscopic database," J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005). [CrossRef]
  15. V. Nagali and R. K. Hanson, "Design of a diode-laser sensor to monitor water vapour in high-pressure combustion gases," App. Opt. 36, 9518-9527 (1997). [CrossRef]
  16. M. E. Webber, S. Kim, S. T. Sanders, D. S. Baer, R. K. Hanson and Y. Ikeda, "In situ combustion measurements of CO2 by use of a distributed-feedback diode-laser sensor near 2.0 ?m," App. Opt. 22, 821-828 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited