OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 26 — Dec. 24, 2007
  • pp: 17724–17735

Dispersion, birefringence, and amplification characteristics of newly designed dispersion compensating hole-assisted fibers

Kunimasa Saitoh, Shailendra K. Varshney, and Masanori Koshiba  »View Author Affiliations

Optics Express, Vol. 15, Issue 26, pp. 17724-17735 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (455 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a new design of hole-assisted fiber (HAF) that can compensate for the accumulated dispersion in single-mode fiber link along with dispersion slope, thus providing broadband dispersion compensation over C-band as well as can amplify the signal channels by utilizing the stimulated Raman scattering phenomena. The proposed dispersion-compensating HAF (DCHAF) exhibits the lowest dispersion coefficient of -550 ps/nm/km at 1550 nm with an effective mode area of 15.6 µm2. A 2.52 km long module of DCHAF amplifies incoming signals by rendering a gain of 4.2 dB with ±0.8 dB gain flatness over whole C-band. To obtain accurate modal properties of DCHAF, a full-vector finite element method (FEM) solver is employed. The macro-bend loss characteristics of the proposed DCHAF are evaluated using FEM solver in cylindrical coordinate systems of a curved DCHAF, and low bending losses (<10-2 dB/m for 1 cm bending radius) are obtained for improved DCHAF design while keeping intact its dispersion compensation and Raman amplification properties. We have further investigated the birefringence characteristics that can give significant information on the polarization mode dispersion of DCHAF by assuming a certain deformation (eccentricity e=7%) either in air-holes or in the doped core or in both at a same time. It is noticed that the distortion in air-holes induces a birefringence of 10-5, which is larger by a factor of 10 than the birefringence caused due to the core ellipticity. A PMD of 11.3 ps/√km is obtained at 1550 nm for distorted air-holes DCHAF structure.

© 2007 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2400) Fiber optics and optical communications : Fiber properties
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: October 22, 2007
Revised Manuscript: December 10, 2007
Manuscript Accepted: December 10, 2007
Published: December 12, 2007

Kunimasa Saitoh, Shailendra K. Varshney, and Masanori Koshiba, "Dispersion, birefringence, and amplification characteristics of newly designed dispersion compensating hole-assisted fibers," Opt. Express 15, 17724-17735 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Gruner-Nielsen, M. Wandel, P. Kristensen, C. Jorgensen, L.U. Jorgensen, B. Edvold, B. Palsdottir, and D. Jakobsen, "Dispersion-compensating fibers," J. Lightwave Technol. 23, 3566-3579 (2005). [CrossRef]
  2. K. Thyagarajan, R.K. Varshney, P. Palai, A.K. Ghatak, and I.C. Goyal, "A novel design of a dispersion compensating fiber," IEEE Photon. Technol. Lett. 8, 1510-1512 (1996). [CrossRef]
  3. J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D.B. Ostrowsky, B.P. Pal, and K. Thyagarajan, "?1800 ps/(nm.km) chromatic dispersion of 1.55 ?m in dual concentric core fibre," Electron. Lett. 36, 1689-1691 (2000). [CrossRef]
  4. P.St.J. Russell, "Photonic crystal fiber," Science 288, 358-362 (2003). [CrossRef]
  5. J.C. Knight, "Photonic crystal fibers and fiber lasers," J. Opt. Soc. Am. B 24, 1661-1668 (2007). [CrossRef]
  6. A. Bjarklev, J. Broeng, and A.S. Bjarklev, Photonic Crystal Fibres (Kluwer Academic, The Netherlands, 2003). [CrossRef]
  7. T.A. Birks, J.C. Knight, and P.St.J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
  8. K. Saitoh, M. Koshiba, T. Hasegawa, E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: Application to ultra-flattened dispersion," Opt. Express 11, 843-852 (2003). [CrossRef] [PubMed]
  9. S.K. Varshney, K. Saitoh, and M. Koshiba, "A novel design for dispersion-compensating photonic crystal fiber Raman amplifier," IEEE Photon. Technol. Lett. 17, 2062-2064 (2005). [CrossRef]
  10. S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, "Novel design of inherently gain-flattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band," Opt. Express 13, 9516-9526 (2005). [CrossRef] [PubMed]
  11. S.K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, "Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band," Opt. Express 14,3528-3540 (2006). [CrossRef] [PubMed]
  12. S.K. Varshney, K. Saitoh, M. Koshiba, and P.J. Roberts, "Analysis of a realistic and idealized dispersion- compensating photonic crystal fiber Raman amplifier," Opt. Fiber Technol. 13, 174-179 (2007). [CrossRef]
  13. T. Fujisawa, K. Saitoh, K. Wada, and M. Koshiba, "Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation," Opt. Express 14, 893-900 (2006). [CrossRef] [PubMed]
  14. F. Gérôme, J.-L. Auguste, and J.-M. Blondy, "Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber," Opt. Lett. 29, 2725-2727 (2005). [CrossRef]
  15. B.J. Mangan, F. Couny, L. Farr, A. Langford, P.J. Roberts, D.P. Williams, M. Banham, M.W. Mason, D.F. Murphy, E.A.M. Brown, H. Sabert, T.A. Birks, J.C. Knight, and P.St.J. Russell, "Slope-matched dispersion-compensating photonic crystal fibre," in Proceedings of Conference on Lasers and Electro-Optics (CLEO 2004), paper CPDD3, San Francisco, CA, (2004). [PubMed]
  16. T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, "Hole-assisted lightguide fiber for large anomalous dispersion and low optical loss," Opt. Express 9, 681-686 (2001). [CrossRef] [PubMed]
  17. K. Saitoh, Y. Tsuchida, and M. Koshiba, "Bending-insensitive single-mode hole-assisted fibers with reduced splice loss," Opt. Lett. 30, 1779-1781 (2005). [CrossRef] [PubMed]
  18. B.L. Heffner, "Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis," IEEE Photon. Technol. Lett. 4, 1066-1069 (1992). [CrossRef]
  19. K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 33, 927-933 (2002). [CrossRef]
  20. K. Kakihara, N. Kono, K. Saitoh, and M. Koshiba, "Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends," Opt. Express 14, 11128-11141 (2006). [CrossRef] [PubMed]
  21. M. Bottacini, F. Poli, A. Cucinotta, and S. Selleri, "Modeling of photonic crystal fiber Raman amplifiers," J. Lightwave Technol. 22, 1707-1713 (2004). [CrossRef]
  22. M. Onishi, Y. Koyano, M. Shigematsu, H. Kanamori, and H. Nishimura, "Dispersion compensating fiber with a high figure of merit of 250 ps/nm/dB," Electron. Lett. 30, 161-163 (1994). [CrossRef]
  23. Through e-mail correspondence with crystal-fiber company (www.crystal-fiber.com).
  24. G. Millot, A. Sauter, J.M. Dudley, L. Provino, and R.S. Windeler, "Polarization mode dispersion and vectorial modulational instability in air-silica microstructure fiber," Opt. Lett. 27, 695-697 (2002). [CrossRef]
  25. A.O. Dal Forno, A. Paradisi, R. Passy, and J.P. von der Weid, "Experimental and theoretical modeling of polarization-mode dispersion in single-mode fibers," IEEE Photon. Technol. Lett. 12, 296-298 (2000). [CrossRef]
  26. D.A. Nolan, X. Chen, and M. Li, "Fibers with low polarization-mode dispersion," J. Lightwave Technol. 22, 1066-1077 (2004). [CrossRef]
  27. D. Gupta, A. Kumar, and K. Thyagarajan, "Polarization mode dispersion in single mode optical fibers due to core-ellipticity," Opt. Commun. 263, 36-41 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited