OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 26 — Dec. 24, 2007
  • pp: 17783–17797

Planar glass waveguide ring resonators with gain

Hsien-kai Hsiao and K. A. Winick  »View Author Affiliations

Optics Express, Vol. 15, Issue 26, pp. 17783-17797 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (209 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The frequency resolution of an active waveguide ring resonator spectrometer is fundamentally limited by spontaneous emission noise produced by the gain medium. A closed-form expression for this resolution is derived, and the result is used to determine the minimum, rms, angular rotation rate, random walk error achievable by an active ring resonator gyroscope. An active waveguide ring resonator is demonstrated in a neodymium-doped glass, and a finesse of 250 at a signal wavelength of 1060 nm is achieved for the 1.6 cm diameter ring under laser diode pumping. This finesse corresponds to an effective propagation loss on the order of 0.013 dB/cm, which is the lowest value reported to date for rings of this size.

© 2007 Optical Society of America

OCIS Codes
(060.2800) Fiber optics and optical communications : Gyroscopes
(140.4780) Lasers and laser optics : Optical resonators
(230.3120) Optical devices : Integrated optics devices
(300.6190) Spectroscopy : Spectrometers
(130.2755) Integrated optics : Glass waveguides
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 27, 2007
Revised Manuscript: December 3, 2007
Manuscript Accepted: December 5, 2007
Published: December 13, 2007

Hsien-kai Hsiao and K. A. Winick, "Planar glass waveguide ring resonators with gain," Opt. Express 15, 17783-17797 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez and R. E. Scotti, "Integrated all-pass filters for tunable dispersion and dispersion slope compensation," IEEE Photon. Technol. Lett. 11, 1623-1625 (1999). [CrossRef]
  2. S. T. Chu, B. E. Little, W. Pan, T. Kaneko and Y. Kokubun, "A second-order filter response from parallel coupled glass microring resonators," IEEE Photon. Technol. Lett. 11, 1426-1428 (1999). [CrossRef]
  3. G. Priem, P. Dumon, W. Bogaerts, D. Van Thourhout, G. Morthier and R. Baets, "Optical bistability and pulsating behavior in silicon-on-insulator ring resonator structures," Opt. Express 13, 9623-9628 (2005). [CrossRef] [PubMed]
  4. Q. Xu and M. Lipson, "All-optical logic based on silicon micro-ring resonators," Opt. Express 15, 924-929 (2007). [CrossRef] [PubMed]
  5. A. Ksendzov and Y. Lin, "Integrated optics ring-resonator sensors for protein detection," Opt. Lett. 30, 3344-3346 (2005). [CrossRef]
  6. P. Mottier and P. Pouteau, "Solid state optical gyrometer integrated on silicon," Electron. Lett. 33, 1975-1977 (1997). [CrossRef]
  7. J. Haavisto and G. A. Pajer, "Resonance effects in low-loss ring waveguides," Opt. Lett. 5, 510-512 (1980). [CrossRef] [PubMed]
  8. R. G. Walker and C. D. W. Wilkinson, "Integrated optical ring resonators made by silver ion-exchange in glass," Appl. Opt. 22, 1029-1035 (1983). [CrossRef] [PubMed]
  9. G. Li, K. A. Winick, H. C. Griffin and J. Hayden, "Systematic modeling study of channel waveguide fabrication by thermal silver ion exchange," Appl. Opt. 45, 1743-1755 (2006). [CrossRef] [PubMed]
  10. R. Adar, M. R. Serbin and V. Mizrahi, "Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator," J. Lightwave Technol. 12, 1369-1372 (1994). [CrossRef]
  11. T. Kitagawa, K. Hattori, Y. Hibino and Y. Ohmori, "Laser Oscillation in Erbium-Doped Silica-Based Planar Ring Resonators," in Proceedings of 18th European Conf. on Optical Commun. (ECOC), (1992), Th PD-II.5, pp. 907-910.
  12. W. Sohler, B. K. Das, D. Dey, S. Reza, H. Suche and R. Ricken, "Erbium-doped lithium niobate waveguide lasers," IEICE Trans. Electron.E 88-C, 990- 997 (2005). [CrossRef]
  13. T. A. Dorschner, H. A. Haus, M. Holz I. W. Smith, H. Statz, "Laser gyro at quantum limit," IEEE J. Quantum Electron. QE-16, 1376-1379 (1980). [CrossRef]
  14. L. F. Stokes, M. Chodorow and H. J. Shaw,"All-single-mode fiber resonator," Opt. Lett. 7, 288-290 (1982). [CrossRef] [PubMed]
  15. S. Ezekiel, S. P. Smith and F. Zarinetchi, "Basic principles of fiber-optic gyroscopes," in Optical fiber Rotation Sensing, W. K. Burns, ed., (Academic Press, NY, 1994), Chap. 1.
  16. S. Ezekiel and S. R. Balsamo, "Passive ring resonator laser gyroscope," Appl. Phys. Lett. 30, 478-480 (1977). [CrossRef]
  17. R. E. Meyer, S. Ezekiel, D. W. Stowe and V. J. Tekippe, "Passive fiber-optic ring resonator for rotation sensing," Opt. Lett. 8, 644-646 (1983). [CrossRef] [PubMed]
  18. K. Suzuki, K. Takiguchi and K. Hotate, "Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit," J. Lightwave Technol. 18, 66-72 (2000). [CrossRef]
  19. H. Ma, X. Zhang, Z. Jin and C. Ding, "Waveguide-type optical passive resonator gyro using phase modulation spectroscopy technique," Opt. Eng. Lett. 45, 080506-1 - 080506-3 (2006).
  20. H. Okamura and K Iwatsuki, "A finesse-enhanced Er-doped-fiber ring resonator," J. Lightwave Technol. 9, 1554-1560 (1991). [CrossRef]
  21. J. T. Kringlebotn, "Amplified fiber ring resonator gyro," IEEE Photon. Technol. Lett. 4, 1180-1183 (1992). [CrossRef]
  22. J. T. Kringlebotn, P. R. Morkel, C. N. Pannell, D. N. Payne and R. I. Laming, "Amplified fibre delay line with 27 000 recirculations," Electron. Lett. 28, 201-202 (1992).
  23. W. T. Silfvast, "Radiation and thermal equilibrium," in Laser Fundamentals, (Cambridge University Press, 2004), Chap. 6.
  24. W. T. Silfvast, "Conditions for producing a laser," in Laser Fundamentals, (Cambridge University Press, 2004), Chap. 7.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited