OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 26 — Dec. 24, 2007
  • pp: 18209–18219

Adaptive optics for enhanced signal in CARS microscopy

A. J. Wright, S. P. Poland, J. M. Girkin, C. W. Freudiger, C. L. Evans, and X. S. Xie  »View Author Affiliations

Optics Express, Vol. 15, Issue 26, pp. 18209-18219 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1049 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the use of adaptive optics with coherent anti-Stokes Raman scattering (CARS) microscopy for label-free deep tissue imaging based on molecular vibrational spectroscopy. The setup employs a deformable membrane mirror and a random search optimization algorithm to improve signal intensity and image quality at large sample depths. We demonstrate the ability to correct for both system and sample-induced aberrations in test samples as well as in muscle tissue in order to enhance the CARS signal. The combined system and sample-induced aberration correction increased the signal by an average factor of ~3x for the test samples at a depth of 700 µm and ~6x for muscle tissue at a depth of 260 µm. The enhanced signal and higher penetration depth offered by adaptive optics will augment CARS microscopy as an in vivo and in situ biomedical imaging modality.

© 2007 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(220.1000) Optical design and fabrication : Aberration compensation
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(180.4315) Microscopy : Nonlinear microscopy
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: October 30, 2007
Revised Manuscript: December 14, 2007
Manuscript Accepted: December 17, 2007
Published: December 19, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics

A. J. Wright, S. P. Poland, J. M. Girkin, C. W. Freudiger, C. L. Evans, and X. S. Xie, "Adaptive optics for enhanced signal in CARS microscopy," Opt. Express 15, 18209-18219 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. D. Cahalan, I. Parker, S. H. Wei, and M. J. Miller, "Real-time imaging of lymphocytes in vivo," Curr. Opin. Immunol. 15,372-377 (2003) [CrossRef] [PubMed]
  2. B. R. Masters and P. T. C. So, "Confocal microscopy and multi-photon excitation microscopy of human skin in vivo," Opt. Express 8,2-10 (2001). [CrossRef] [PubMed]
  3. G. Marques, L. Wang, S. P. Lin, S. L. Jacques, F. K. Tittel, S. L. Thomsen and J. Schwartz, "Measurement of Absorption and Scattering Spectra of Chicken Breast with Oblique Incidence Reflectometry," Proc. SPIE 2976,306-317 (1997) [CrossRef]
  4. M. Schwertner, M. J. Booth, and T. Wilson, "Characterizing specimen induced aberrations for high NA adaptive optics microscopy," Opt. Express 12,6540-6552 (2004). [CrossRef] [PubMed]
  5. F. Ganikhanov, S. Carrasco, X. S. Xie, M. Katz, W. Seitz, D. Kopf, "Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy," Opt. Lett.,  31, 1292-1294 (2006). [CrossRef] [PubMed]
  6. F. Helmchen and W. Denk, "Deep tissue two-photon microscopy," Nat. Methods 2,932-940 (2005). [CrossRef] [PubMed]
  7. W. R Zipfel, R. M. Williams, and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nat. Biotech.  21,1369 - 1377 (2003) [CrossRef]
  8. J. X. Cheng and X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications," J. Phys. Chem. B 108,827-840 (2004). [CrossRef]
  9. F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, "High sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM-CARS) microscopy," Opt. Lett. 31, 1872-1874 (2006). [CrossRef] [PubMed]
  10. C. L. Evans, E. O. Potma, M. Puoris'haag, D. Côté, C. P. Lin, and X. S. Xie, "Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy," PNAS 102, 16807-16812 (2005). [CrossRef] [PubMed]
  11. C. L. Evans, X. Xu, S. Kesari, X. S. Xie, S. T.C. Wong and G. S. Young, "Chemically-selective imaging of brain structures with CARS microscopy," Opt. Express 15,12076-12087 (2007) [CrossRef] [PubMed]
  12. J. X. Cheng, A. Volkmer, L. D. Book, X. S. Xie, "Multiplex Coherent Anti-Stokes Raman Scattering Microspectroscopy and Study of Lipid Vesicles," J. Phys. Chem. B 106, 8493 (2002). [CrossRef]
  13. J. X. Cheng, S. Pautot, A. D. Weitz, and X. S. Xie, "Ordering of Water Molecules Between Phospholipid Bilayers Visualized by Coherent anti-Stokes Raman Scattering Microscopy," PNAS 100, 9826-9830 (2003). [CrossRef] [PubMed]
  14. X. Nan, W. Y. Yan, and X. S. Xie, "CARS Microscopy: Lights Up Lipids in Living Cells," Bioph. Int. 11, 44-47 (2004).
  15. X. Nan, A. M. Tonary, A. Stolow, X. S. Xie, J. P. Pezacki, "Intracellular Imaging of HCV RNA and Cellular Lipids by Using Simultaneous Two-Photon Fluorescence and Coherent Anti-Stokes Raman Scattering Microscopies," ChemBioChem 7, 1895-1897 (2006). [CrossRef] [PubMed]
  16. M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson, "Adaptive aberration correction in a confocal microscope," PNAS 99, 5788 (2002). [CrossRef] [PubMed]
  17. L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, "Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror" J. Microscopy 206, 65-71 (2002). [CrossRef]
  18. P. Marsh, D. Burns, and J. Girkin, "Practical implementation of adaptive optics in multiphoton microscopy," Opt. Express 11, 1123-1130 (2003). [CrossRef] [PubMed]
  19. A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, "Exploration of the Optimisation Algorithms used in the implementation of Adaptive Optics in Confocal and Multiphoton Microscopy," Microsc. Res. Tech. 67, 36-44 (2005). [CrossRef] [PubMed]
  20. M. Rueckel, J. A. Mack-Bucher, and W. Denk, "Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing," PNAS 103, 17137 (2006). [CrossRef] [PubMed]
  21. R. K. Tyson, "Principles of adaptive optics," Principles of adaptive optics, Edition: 2nd ed., Publisher: Boston, MA: Academic Press, 1998, ISBN: 0127059024 (1998).
  22. M. A. A. Neil, M. J. Booth, and T. Wilson, "Closed-loop aberration correction by use of a modal Zernike wave-front sensor," Opt. Lett. 25,1083-1085, (2000). [CrossRef]
  23. A. J. Wright, B. A. Patterson, S. P. Poland, J. M. Girkin, G. M. Gibson, and M. J. Padgett, "Dynamic closed-loop system for focus tracking using a spatial light modulator and a deformable membrane mirror," Opt. Express 14,222-228 (2005) [CrossRef]
  24. E. Dalimier and C. Dainty, "Comparative analysis of deformable mirrors for ocular adaptive optics," Opt. Express 13, 4275-4285 (2005). [CrossRef] [PubMed]
  25. L. Zhu, P.-C. Sun, D.-U. Bartsch, W. R. Freeman, and Y. Fainman, "Wave-front generation of Zernike polynomial modes with a micromachined membrane deformable mirror," App. Opt. 38, 6019-6026 (1999). [CrossRef]
  26. S. Tang, T. B. Krasieva, Z. Chen, and B. J. Tromberg, "Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source," J. Biomed. Opt. 11,020502, (2006). [CrossRef] [PubMed]
  27. J. J. Dirckx, L. C. Kuypers, and W. F. Decraemer, "Refractive index of tissue measured with confocal microscopy," J. Biomed. Opt. 4044014 (2005). [CrossRef]
  28. E. J. Fernández and P. Artal, "Membrane deformation mirror for adaptive optics: performance limits in visual optics," Opt. Express 11, 1056-1069 (2003). [CrossRef] [PubMed]
  29. A. J. Wright, S. P. Poland, J. Vijverberg, and J. M. Girkin, "A practical implementation of adaptive optics for aberration compensation in optical microscopy," Proc. 6th International Workshop on Adaptive Optics for Industry and Medicine, paper [30] (2007)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited