OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 26 — Dec. 24, 2007
  • pp: 18351–18356

Low-loss, flat-passband and athermal arrayedwaveguide grating multi/demultiplexer

Koichi Maru and Yukio Abe  »View Author Affiliations

Optics Express, Vol. 15, Issue 26, pp. 18351-18356 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (129 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We successfully demonstrated a low-loss, flat-passband, and athermal arrayed-waveguide grating (AWG) multi/demultiplexer with a Mach-Zehnder interferometer (MZI) as an input router. Resin-filled trenches were formed in the longer arm of the MZI as well as the slab in the AWG to compensate for the temperature dependence. A 32-channel athermal multi/demultiplexer was fabricated using silica-based planar lightwave circuit (PLC) technology. A small temperature-dependent wavelength shift of 0.02 nm was obtained over the temperature range of-5 to 65oC with low-loss (3.3-3.7 dB) and flat-passband spectra.

© 2007 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7390) Optical devices : Waveguides, planar
(130.2755) Integrated optics : Glass waveguides
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

Original Manuscript: November 29, 2007
Revised Manuscript: December 16, 2007
Manuscript Accepted: December 18, 2007
Published: December 20, 2007

Koichi Maru and Yukio Abe, "Low-loss, flat-passband and athermal arrayed-waveguide grating multi/demultiplexer," Opt. Express 15, 18351-18356 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Okamoto and H. Yamada, "Arrayed-waveguide grating multiplexer with flat spectral response," Opt. Lett. 20, 43-45 (1995). [CrossRef] [PubMed]
  2. M. R. Amersfoort, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, and C. Caneau, "Passband broadening of integrated arrayed waveguide filters using multimode interference couplers," Electron. Lett. 32, 449-451 (1996). [CrossRef]
  3. K. Okamoto and A. Sugita, "Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns," Electron. Lett. 32, 1661-1662 (1996). [CrossRef]
  4. C. Dragone, "Efficient techniques for widening the passband of a wavelength router," J. Lightwave Technol. 16, 1895-1906 (1998). [CrossRef]
  5. T. Kamalakis and T. Sphicopoulos, "An efficient technique for the design of an arrayed-waveguide grating with flat spectral response," J. Lightwave Technol. 19, 1716-1725 (2001). [CrossRef]
  6. J.-J. He, "Phase-dithered waveguide grating with flat passband and sharp transitions," IEEE J. Sel. Top. Quantum Electron. 8, 1186-1193 (2002). [CrossRef]
  7. G. H. B. Thompson, R. Epworth, C. Rogers, S. Day, and S. Ojha, "An original low-loss and pass-band flattened SiO2 on Si planar wavelength demultiplexer," in Proceedings of Optical Fiber Communication Conference (OFC ’98), p. 77.
  8. C. R. Doerr, L. W. Stulz, R. Pafchek, and S. Shunk, "Compact and low-loss manner of waveguide grating router passband flattening and demonstration in a 64-channel blocker/multiplexer," IEEE Photon. Technol. Lett. 14, 56-58 (2002). [CrossRef]
  9. M. Kohtoku, H. Takahashi, I. Kitoh, I. Shibata, Y. Inoue, and Y. Hibino, "Low-loss flat-top passband arrayed waveguide gratings realised by first-order mode assistance method," Electron. Lett. 38, 792-794 (2002). [CrossRef]
  10. C. Dragone, "Theory of wavelength multiplexing with rectangular transfer functions," IEEE J. Sel. Top. Quantum Electron. 8, 1168-1178 (2002). [CrossRef]
  11. C. R. Doerr, R. Pafchek, and L. W. Stulz, "Integrated band demultiplexer using waveguide grating routers," IEEE Photon. Technol. Lett. 15, 1088-1090 (2003). [CrossRef]
  12. C. R. Doerr, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, and L. T. Gomez, "Low-loss rectangular-passband multiplexer consisting of a waveguide grating router synchronized to a three-arm interferometer," IEEE Photon. Technol. Lett. 17, 2334-2336 (2005). [CrossRef]
  13. K. Maru, T. Mizumoto, and H. Uetsuka, "Modeling of multi-input arrayed waveguide grating and its application to design of flat-passband response using cascaded Mach-Zehnder interferometers," J. Lightwave Technol. 25, 544-555 (2007). [CrossRef]
  14. K. Maru, T. Mizumoto, and H. Uetsuka, "Demonstration of flat-passband multi/demultiplexer using multi-input arrayed waveguide grating combined with cascaded Mach-Zehnder interferometers," J. Lightwave Technol. 25, 2187-2197 (2007). [CrossRef]
  15. Y. Inoue, A. Kaneko, and F. Hanawa, "Athermal silica-based arrayed-waveguide grating (AWG) multiplexer," in Proceedings of 23rd European Conference on Optical Communication (ECOC’97), TH3B, pp. 33-36.
  16. A. Kaneko, S. Kamei, Y. Inoue, H. Takahashi, and A. Sugita, "Athermal silica-based arrayed-waveguide grating (AWG) multiplexers with new low loss groove design," in Proceedings of Optical Fiber Communication Conference (OFC’99), TuO1, pp. 204-206.
  17. K. Maru, M. Ohkawa, H. Nounen, S. Takasugi, S. Kashimura, H. Okano, and H. Uetsuka, "Athermal and center wavelength adjustable arrayed-waveguide grating," in Proceedings of Optical Fiber Communication Conference (OFC 2000), WH3, pp. 130-132.
  18. K. Maru, K. Matsui, H. Ishikawa, Y. Abe, S. Kashimura, S. Himi, and H. Uetsuka, "Super-high-? athermal arrayed waveguide grating with resin-filled trenches in slab region," Electron. Lett. 40, 374-375 (2004). [CrossRef]
  19. M. Kawachi, "Silica waveguides on silicon and their application to integrated-optic components," Opt. Quantum Electron. 22, 391-416 (1990). [CrossRef]
  20. M. Okawa, K. Maru, H. Uetsuka, T. Hakuta, H. Okano, and K. Matsumoto, "Low loss and wide passband arrayed waveguide grating demultiplexer," in Proceedings of 24th European Conference on Optical Communication (ECOC ’98), vol. 1, pp. 323-324.
  21. Y. Inoue, M. Itoh, Y. Hashizume, Y. Hibino, A. Sugita, and A. Himeno, "Novel birefringence compensating AWG design," in Proceedings of Optical Fiber Communication Conference (OFC 2001), WB4.
  22. K. Maru, M. Okawa, Y. Abe, T. Hakuta, S. Himi, and H. Uetsuka, "Silica-based 2.5%-? arrayed waveguide grating using simple polarisation compensation method with core width adjustment," Electron. Lett. 43, 26-27 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited