OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 3 — Feb. 5, 2007
  • pp: 1211–1221

Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides

Georgios Veronis and Shanhui Fan  »View Author Affiliations


Optics Express, Vol. 15, Issue 3, pp. 1211-1221 (2007)
http://dx.doi.org/10.1364/OE.15.001211


View Full Text Article

Enhanced HTML    Acrobat PDF (352 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically investigate the properties of compact couplers between high-index contrast dielectric slab waveguides and two-dimensional metal-dielectric-metal subwavelength plasmonic waveguides. We show that a coupler created by simply placing a dielectric waveguide terminated flat at the exit end of a plasmonic waveguide can be designed to have a transmission efficiency of ~70% at the optical communication wavelength. We also show that the transmission efficiency of the couplers can be further increased by using optimized multisection tapers. In both cases the transmission response is broadband. In addition, we investigate the properties of a Fabry-Perot structure in which light is coupled in and out of a plasmonic waveguide sandwiched between dielectric waveguides. Finally, we discuss potential fabrication processes for structures that demonstrate the predicted effects.

© 2007 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: November 6, 2006
Revised Manuscript: January 17, 2007
Manuscript Accepted: January 17, 2007
Published: February 5, 2007

Citation
Georgios Veronis and Shanhui Fan, "Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides," Opt. Express 15, 1211-1221 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-3-1211


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477 (1997). [CrossRef] [PubMed]
  2. J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061-9068 (1999). [CrossRef]
  3. J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Nondiffraction-limited light transport by gold nanowires," Europhys. Lett. 60, 663-669 (2002). [CrossRef]
  4. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-R16359 (2000). [CrossRef]
  5. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003). [CrossRef] [PubMed]
  6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005). [CrossRef] [PubMed]
  7. E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969). [CrossRef]
  8. K. Tanaka and M. Tanaka, "Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide," Appl. Phys. Lett. 82, 1158-1160 (2003). [CrossRef]
  9. F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, "Propagation properties of guided waves in index-guided two-dimensional optical waveguides," Appl. Phys. Lett. 86, 211101 (2005). [CrossRef]
  10. G. Veronis and S. Fan, "Guided subwavelength plasmonic mode supported by a slot in a thin metal film," Opt. Lett. 30, 3359-3361 (2005). [CrossRef]
  11. L. Liu, Z. Han, and S. He, "Novel surface plasmon waveguide for high integration," Opt. Express 13, 6645-6650 (2005). [CrossRef] [PubMed]
  12. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, "Two-dimensionally localized modes of a nanoscale gap plasmon waveguide," Appl. Phys. Lett. 87, 261114 (2005). [CrossRef]
  13. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A 21, 2442-2446 (2004). [CrossRef]
  14. M. Lipson, "Guiding, modulating, and emitting light on Silicon - Challenges and opportunities," J. Lightwave Technol. 23, 4222-4238 (2005). [CrossRef]
  15. J. A. Dionne, H. J. Lezec, and H. A. Atwater, "Highly confined photon transport in subwavelength metallic slot waveguides," Nano Lett. 6, 1928-1932 (2006). [CrossRef] [PubMed]
  16. P. Ginzburg, D. Arbel, and M. Orenstein, "Efficient coupling of nano-plasmonics to micro-photonic circuitry," in Conference on Lasers and Electro-optics (Optical Society of America, 2005), paper CWN5.
  17. L. Chen, J. Shakya, and M. Lipson, "Subwavelength confinement in an integrated metal slot waveguide on silicon," Opt. Lett. 31, 2133-2135 (2006). [CrossRef] [PubMed]
  18. M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, "Integrated plasmon and dielectric waveguides," Opt. Express 12, 5481-5486 (2004). [CrossRef] [PubMed]
  19. S. D. Wu, and E. N. Glytsis, "Finite-number-of-periods holographic gratings with finite-width incident beams: analysis using the finite-difference frequency-domain method," J. Opt. Soc. Am. A 19, 2018-2029 (2002). [CrossRef]
  20. G. Veronis, R. W. Dutton, and S. Fan, "Method for sensitivity analysis of photonic crystal devices," Opt. Lett. 29, 2288-2290 (2004). [CrossRef] [PubMed]
  21. Handbook of Optical Constants of Solids, edited by E. D. Palik (Academic, New York, 1985).
  22. J. Jin, The Finite Element Method in Electromagnetics, (Wiley, New York, 2002).
  23. A. Taflove, Computational Electrodynamics, (Artech House, Boston, 1995).
  24. D. M. Pozar, Microwave Engineering, (Wiley, New York, 1998).
  25. H. Henke, H. Fruchting, and R. Winz, "Diffraction by a flanged parallel-plate waveguide and a slit in a thick screen," Radio Sci. 14, 11-18 (1979). [CrossRef]
  26. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999). [CrossRef]
  27. P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Moller, "One-mode model and Airy-like formulae for one-dimensional metallic gratings," J. Opt. A, Pure Appl. Opt.  2, 48-51 (2000). [CrossRef]
  28. S. Astilean, P. Lalanne, M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175, 265-273 (2000). [CrossRef]
  29. Y. Takakura, "Optical resonance in a narrow slit in a thick metallic screen," Phys. Rev. Lett. 86, 5601-5603 (2001). [CrossRef] [PubMed]
  30. F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003). [CrossRef] [PubMed]
  31. M. M. Spuhler, B. J. Offrein, G. L. Bona, R. Germann, I. Massarek, and D. Erni, "A very short planar silica spot-size converter using a nonperiodic segmented waveguide," J. Lightwave Technol. 16, 1680-1685 (1998). [CrossRef]
  32. B. Luyssaert, P. Vandersteegen, D. Taillaert, P. Dumon,W. Bogaerts, P. Bienstman, D. Van Thourhout, V. Wiaux, S. Beckx, and R. Baets, "A compact photonic horizontal spot-size converter realized in silicon-on-insulator," IEEE Photon. Technol. Lett. 17, 73-75 (2005). [CrossRef]
  33. B. Luyssaert, P. Bienstman, P. Vandersteegen, P. Dumon, and R. Baets, "Efficient nonadiabatic planar waveguide tapers," J. Lightwave Technol. 23, 2462-2468 (2005). [CrossRef]
  34. K. Krishnakumar, "Micro-genetic algorithms for stationary and non-stationary function optimization," Proc. SPIE 1196, 289-296 (1989).
  35. B. Wang, J. Jiang, and G. P. Nordin, "Compact slanted grating couplers," Opt. Express 12, 3313-3326 (2004). [CrossRef] [PubMed]
  36. P. Koonath, K. Kishima, T. Indukuri, and B. Jalali, "Sculpting of three-dimensional nano-optical structures in silicon," Appl. Phys. Lett. 83, 4909-4911 (2003). [CrossRef]
  37. P. Koonath, T. Indukuri, and B. Jalali, "Vertically-coupled micro-resonators realized using three-dimensional sculpting in silicon," Appl. Phys. Lett. 85, 1018-1020 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited