OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 3 — Feb. 5, 2007
  • pp: 1277–1285

Photosensitive post tuning of chalcogenide photonic crystal waveguides

Michael W. Lee, Christian Grillet, Cameron L.C. Smith, David J. Moss, Benjamin J. Eggleton, Darren Freeman, Barry Luther-Davies, Steve Madden, Andrei Rode, Yinlan Ruan, and Yong-hee Lee  »View Author Affiliations


Optics Express, Vol. 15, Issue 3, pp. 1277-1285 (2007)
http://dx.doi.org/10.1364/OE.15.001277


View Full Text Article

Enhanced HTML    Acrobat PDF (662 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present experimental results on post-tuning the dispersion of a two-dimensional photonic crystal waveguide made from Ge33As12Se55 chalcogenide glass by exploiting the material photosensitivity to near-bandgap light. The change in the refractive index and volume of the material in response to exposure to 633nm light resulted in a shift of more than 5nm in the resonant coupling wavelength between a tapered optical fiber and the modes of a W1 waveguide. This represents a first proof of principle demonstration of the photosensitive post-tuning of a planar photonic crystal device.

© 2007 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(160.5320) Materials : Photorefractive materials
(230.3120) Optical devices : Integrated optics devices
(230.7370) Optical devices : Waveguides

ToC Category:
Photonic Crystals

History
Original Manuscript: December 5, 2006
Revised Manuscript: January 22, 2007
Manuscript Accepted: January 26, 2007
Published: February 5, 2007

Citation
Michael W. Lee, Christian Grillet, Cameron L. C. Smith, David J. Moss, Benjamin J. Eggleton, Darren Freeman, Barry Luther-Davies, Steve Madden, Andrei Rode, Yinlan Ruan, and Yong-hee Lee, "Photosensitive post tuning of chalcogenide photonic crystal waveguides," Opt. Express 15, 1277-1285 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-3-1277


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J-M. Lourtioz, H. Benisty, V. Berger, J-M. Gerard, D. Maystre, and A. Tchelnokov, Photonic Crystals: Towards Nanoscale Photonic Devices (Springer, 2005).
  2. H. M. H. Chong, and R. Delarue, "Tuning of photonic crystal waveguide microcavity by thermooptic effect," IEEE Phot. Tech. Lett. 16, 1528-1530 (2004). [CrossRef]
  3. R. Ferrini, J. Martz, L. Zuppiroli, B. Wild, V. Zabelin, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, "Planar photonic crystals infiltrated with liquid crystals: optical characterization of molecule orientation," Opt. Lett. 31, 1238-1240 (2006). [CrossRef] [PubMed]
  4. D. Erickson, T. Rockwood, T. Emery, A. Sherer, and D. Psaltis, "Nanofluidic tuning of photonic crystal circuits," Opt. Lett. 31, 59-61 (2006). [CrossRef] [PubMed]
  5. D. Dalacu, S. Frédérick, P. J. Poole, G. C. Aers, and R. L. Williams, "Postfabrication fine-tuning of photonic crystal microcavities in InAs/InP quantum dot membranes," Appl. Phys. Lett. 87, 151107 (2005). [CrossRef]
  6. W. Park and J-B. Lee, "Mechanically tunable photonic crystal structure," Appl. Phys. Lett. 85, 4845-4847 (2004). [CrossRef]
  7. I. Marki, M. Salt, and H. P. Herzig, "Tuning the resonance of a photonic crystal microcavity with an AFM probe," Opt. Express 14, 2969-2978 (2006). [CrossRef] [PubMed]
  8. J. M. Gerard and B. Gayral, "Toward high-efficiency quantum-dot single photon sources," in Quantum Dots, Nanoparticles, and Nanoclusters, D. L. Huffaker and P. Bhattacharya, eds, Proc. SPIE 5361, 88-95 (2004). [CrossRef]
  9. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005). [CrossRef] [PubMed]
  10. A. Zakery and S. R. Elliot, "Optical properties and applications of chalcogenide glasses: a review," J. Non-Cryst. Solids 330, 1-12 (2003). [CrossRef]
  11. C. Grillet, C. Smith, D. Freeman, S. Madden, B. Luther-Davies, E. Magi, D. Moss, and B. Eggleton, "Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires," Opt. Express 14, 1070-1078 (2006). [CrossRef] [PubMed]
  12. S. Ramachandran and S. Bishop, "Photoinduced integrated-optics in rapid thermally annealed chalcogenide glasses," IEEE J. Sel. Top. Quantum Electron. 11, 260-270 (2005). [CrossRef]
  13. R. Decorby, N. Ponnampalam, M. Pai, H. Nguyen, P. Dwivedi, T. Clement, C. Haugen, J. McMullin, and S. Kasap, " High index contrast waveguides in Chalcogenide glass and polymer," IEEE J. Sel. Top. Quantum Electron. 11, 539-546 (2005). [CrossRef]
  14. V. Lyubin, M. Klebanov, A. Feigel, and B. Sfez, "Films of chalcogenide glassy semiconductors: New phenomena and new applications," Thin Solid Films 459, 183-186 (2004). [CrossRef]
  15. M. Shokooh-Saremi, V. Taeed, I. Littler, D. Moss, B. Eggleton, Y. Ruan, and B. Luther-Davies, "Ultra-strong, well-apodised Bragg gratings in Chalcogenide rib waveguides," Electron. Lett. 41, 13-14 (2005). [CrossRef]
  16. T. Sudoh, Y. Nakano, and K. Tada, "Wavelength trimming technology for multiple-wavelength distributed feedback laser array by photo-induced refractive index change," Electron. Lett. 33, 216-217 (1997). [CrossRef]
  17. S. Song, S. Howard, Z. Liu, A. Dirisu, C. Gmachl, and C. Arnold, "Mode tuning of quantum cascade lasers through optical processing of Chalcogenide glass claddings," Appl. Phys. Lett. 89, 041115 (2006). [CrossRef]
  18. A. Zakery, Y. Ruan, A. V. Rode, M. Samoc, and B. Luther-Davies, "Low-loss waveguides in ultrafast laser-deposited As_2S_3 chalcogenide films, " J. Opt. Soc. Am. B 20, 1844-1852 (2003). [CrossRef]
  19. T. T. Nang, M. Okuda and T. Matsushita, "Photo-induced absorption change in some Se-based glass alloy systems," Phys. Rev. B 19,947-955 (1979). [CrossRef]
  20. K. Tanaka, "Reversible photostructural change: Mechanisms, properties and applications," J. Non-Cryst. Solids 35-36, 1023-1034 (1980) [CrossRef]
  21. S. R. Elliott, "A unified model for reversible photostructural effects in chalcogenide glasses," J. Non-Cryst. Solids 81, 71-98 (1986) [CrossRef]
  22. Y. Ruan, M. Kim, Y. Lee, B. Luther-Davies, and A. Rode, "Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography," submitted toApplied Physics Letters.
  23. D. Freeman, S. Madden, and B. Luther-Davies,"Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam," Opt. Express 13, 3079-3086 (2005). [CrossRef] [PubMed]
  24. C. Grillet, D. Freeman, B. Luther-Davies, S. Madden, R. McPhedran, D. J. Moss, M. J. Steel, and B. J. Eggleton, "Characterization and modeling of Fano resonances in chalcogenide photonic crystal membranes," Opt. Express 14, 369-376 (2006). [CrossRef] [PubMed]
  25. Y. K. Lizé, E. C. Mägi, V. G. Ta'eed, J. A. Bolger, P. Steinvurzel, and B. J. Eggleton, "Microstructured optical fiber photonic wires with subwavelength core diameter," Opt. Express 12, 3209-3217 (2004). [CrossRef] [PubMed]
  26. S. Madden, "Investigation into the photosensitivity of AMTIR-1 films," Laser Physics Centre, Australian National University (personal communication, 2006).
  27. A. Zakery and M. Hatami, "Nonlinear optical properties of pulsed-laser-deposited GeAsSe films and simulation of a nonlinear directional coupler switch, " J. Opt. Soc. Am. B 22, 591-597 (2005) [CrossRef]
  28. T. Igo, Y. Noguchi and H. Nagai, "Photoexpansion and ‘thermal contraction’ of amorphous chalcogenide glasses," Appl. Phys. Lett. 25, 193-194 (1974) [CrossRef]
  29. B. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double heterostructure nanocavity," Nature Mater. 4, 207-210 (2005). [CrossRef]
  30. S. Tomljenovic-Hanic, M. Steel, C. de Sterke, and D. Moss, "High-Q cavities in photosensitive photonic crystals," Opt. Lett.Accepted in press. [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited