OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 3 — Feb. 5, 2007
  • pp: 896–909

Tumor localization using diffuse optical tomography and linearly constrained minimum variance beamforming

Nannan Cao and Arye Nehorai  »View Author Affiliations

Optics Express, Vol. 15, Issue 3, pp. 896-909 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (298 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a tumor localization method for diffuse optical tomography using linearly constrained minimum variance (LCMV) beam-forming. Beamforming is a spatial filtering technique where signals from certain directions can be enhanced while noise and interference from other directions are suppressed. In our method, we tessellate the domain into small voxels and regard each voxel as a possible position of abnormality (e.g., tumor). We then design a spatial filter based on the linearly constrained minimum variance criterion and apply it to each voxel in the domain. The abnormality is localized by observing the peak in the filter output signals. We test our method using simulated 3D examples. We assume a cubic transmission geometry and consider different cases where the abnormality is an absorber, a scatterer, and both. We also give examples showing the resolution of our method and its performance under different perturbation levels and noise levels. Simulation results show that LCMV beamforming can localize the abnormality well with good computational efficiency. It can be used alone for tumor localization and also as an effective preprocessing tool for improving the image reconstruction performances of other inverse methods.

© 2007 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(170.3010) Medical optics and biotechnology : Image reconstruction techniques

ToC Category:
Image Processing

Original Manuscript: November 22, 2006
Revised Manuscript: January 15, 2007
Manuscript Accepted: January 16, 2007
Published: February 5, 2007

Virtual Issues
Vol. 2, Iss. 3 Virtual Journal for Biomedical Optics

Nannan Cao and Arye Nehorai, "Tumor localization using diffuse optical tomography and linearly constrained minimum variance beamforming," Opt. Express 15, 896-909 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. H. Barnett, J. P. Culver, A. G. Sorensen, A. M. Dale, and D. A. Boas, "Bayesian estimation of optical properties of the human head via 3D structural MRI," in Photon Migration and Diffuse-Light Imaging, D. A. Boas, ed. Proc. SPIE 5138, 139-147 (2003). [CrossRef]
  2. G. Strangman, D. Boas, and J. Sutton, "Non-invasive neuroimaging using near-infrared light," Biol. Psychiatry 52, 679-693 (2002). [CrossRef] [PubMed]
  3. A. Villringer and B. Chance, "Non-invasive optical spectroscopy and imaging of human brain function," Trends Neurosci. 20, 435-442 (1997). [CrossRef] [PubMed]
  4. D. Grosenick, T. Moesta, H. Wabnitz, J. Mucke, C. Stroszcynski, R. Macdonald, P. Schlag, and H. Rinnerberg, "Time-domain optical mammography: Initial clinial results on detection and characterization of breast tumors," Appl. Opt. 42, 3170-3186 (2003). [CrossRef] [PubMed]
  5. X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. Yodh, and B. Chance, "In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green," Med. Phys. 30, 1039-1047 (2003). [CrossRef] [PubMed]
  6. S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, R41-R93 (1999). [CrossRef]
  7. M. A. O’Leary, "Imaging with diffuse photon density waves," Ph.D. thesis, University of Pennsylvania (1996).
  8. R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, "A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient," Phys. Med. Biol. 45, 1051-1070 (2000). [CrossRef] [PubMed]
  9. B. Pogue, T. McBride, J. Prewitt, U. Osterberg, and K. Paulsen, "Spatially variant regularization improves diffuse optical tomography," Appl. Opt. 38, 2950-2961 (1999). [CrossRef]
  10. M. Guven, B. Yazici, X. Intes, and B. Chance, "Diffuse optical tomography with a priori anatomical information," Phys. Med. Biol. 50, 2837-2858 (2005). [CrossRef] [PubMed]
  11. J. C. Ye, C. A. Bouman, K. J. Webb, and R. P. Millane, "Nonlinear multigrid algorithms for Bayesian optical diffuse tomography," IEEE Trans. Image Process. 10, 909-922 (2001). [CrossRef]
  12. D. Grosenick, H. Wabnitz, H. Rinneberg, K. T. Moesta, and P. M. Schlag, "Development of a time-domain optical mammograph and first in vivo applications," Appl. Opt. 38, 2927-2943 (1999). [CrossRef]
  13. D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, M. M¨oller, C. Stroszczynski, J. St¨obel, B. Wassermann, P. M. Schlag, and H. Rinneberg, "Concentration and oxygen saturation of haemoglobin of 50 breast tumours determined by time-domain optical mammography," Phys. Med. Biol. 49, 1165-1181, (2004). [CrossRef] [PubMed]
  14. B. D. Van Veen and K. M. Buckley, "Beamforming: A versatile approach to spatial filtering," IEEE ASSP. Magazine 5, 4-24 (1988). [CrossRef]
  15. K. Sekihara and S. S. Nagarajan, "Neuromagnetic source reconstruction and inverse modeling," in Proceedings of IEEE EMBS Asian-Pacific Conference on Biomedical Engineering (Institute of Electrical and Electronics Engineers, Keihanna, Japan, 2003), pp. 20-22.
  16. K. Sekihara, S. S. Nagarajan, D. Poeppel, A. Marantz, and Y. Miyashita, "Reconstructing spatio-temporal activities of neural sources using an MEG vector beamforming technique," IEEE Trans. Biomed. Eng. 48, 760-771 (2001). [CrossRef] [PubMed]
  17. B. D. Van Veen, W. van Drongelen, M. Yuchtman, and A. Suzuki, "Localization of brain electrial activity via linearly constrained minimum variance spatial filtering," IEEE Trans. Biomed. Eng. 44, 867-880 (1997). [CrossRef] [PubMed]
  18. M. E. Spencer, R. M. Leahy, J. C. Mosher, and P. S. Lewis, "Adaptive filters for monitoring localized brain activity from surface potential time series," in Conference record of the twenty-sixth Asilomar conference on Signals, Systems and Computers (Institute of Electrical and Electronics Engineers, Pacific Grove, CA, 1992), pp. 156-161.
  19. J.-F. Synnevag, A. Austeng, and S. Holm, "Minimum variance adaptive beamforming applied to medical ultrasound imaging," in Proceedings of IEEE Ultrasonics Symposium, (Institute of Electrical and Electronics Engineers, Rotterdam, Netherlands, 2005), pp. 1199-1202.
  20. A. C. Kak and M. Slaney, Principles of computerized tomographic imaging (IEEE Press, 1988).
  21. D. A. Boas, "A fundamental limitation of linearized algorithms for diffuse optical tomography," Opt. Express 1, 404-413 (1997). [CrossRef] [PubMed]
  22. V. Ntziachristos, B. Chance, and A. G. Yodh, "Differential diffuse optical tomography," Opt. Express 5, 230-242 (1999). [CrossRef] [PubMed]
  23. M. S. Patterson, B. Chance, and B. C. Wilson, "Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties," J. Appl. Opt. 28, 2331-2336 (1989). [CrossRef]
  24. R. Aronson, "Boundary conditions for diffusion of light," J. Opt. Soc. Am. A 12, 2532-2539 (1995). [CrossRef]
  25. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, B. J. Tromberg, "Boundary conditions for the diffusion equation in radiative transfer," J. Opt. Soc. Am. A 11, 2727-2741 (1994). [CrossRef]
  26. S. O. Rice, "Mathematical analysis of random noise," Bell Syst. Tech. J. 23, 282-332 (1944).
  27. J. Sch¨afer and K. Strimmer, "A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics," Statist. Appl. Genet. Mol. Biol. 4, Article 32 (2005).
  28. M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. Fishkin, D. Kidney, J. Butler, B. Chance, and A.G. Yodh, "Three-dimensional diffuse optical mammography with ultrasound localization in a human subject," J. Biomed. Opt. 5, 237-247 (2000). [CrossRef] [PubMed]
  29. M. Papazoglou and J. L. Krolik, "High resolution adaptive beamforming for three-dimensional acoustic imaging of zooplankton," J. Acoust. Soc. Am. 100, 3621-3630 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited