OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 4 — Feb. 19, 2007
  • pp: 1454–1460

Double-pass high-gain low-noise EDFA over Sand C+L-bands by tunable fundamental-mode leakage loss

Chi-Ming Hung, Nan-Kuang Chen, Yinchieh Lai, and Sien Chi  »View Author Affiliations

Optics Express, Vol. 15, Issue 4, pp. 1454-1460 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (147 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a high-gain low-noise double-pass tunable EDFA over S- and C+L-bands by discretely introducing fundamental-mode leakage loss in a 16-m-long standard C-band Er3+-doped fiber. The amplified spontaneous emission at the wavelengths of longer than 1530 nm can be substantially attenuated by the ASE suppressing filters to maintain high population inversion and to squeeze out the optical gain for S-band signals. When the filters are disabled, the gain bandwidth immediately returns back to the C+L-bands. Under S-band operation, a 37 dB small signal gain and a minimum 4.84 dB noise figure at 1486.9 nm are achieved with a 980 nm pump power of 154 mW.

© 2007 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.2410) Fiber optics and optical communications : Fibers, erbium
(260.2030) Physical optics : Dispersion

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 4, 2007
Revised Manuscript: February 8, 2007
Manuscript Accepted: February 8, 2007
Published: February 19, 2007

Chi-Ming Hung, Nan-Kuang Chen, Yinchieh Lai, and Sien Chi, "Double-pass high-gain low-noise EDFA over S- and C+L-bands by tunable fundamental-mode leakage loss," Opt. Express 15, 1454-1460 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Kasamatsu, Y. Yano, and H. Sekita, "1.50-μm-band gain-shifted thulium-doped fiber amplifier with 1.05- and 1.56-μm dual wavelength pumping," Opt. Lett. 24, 1684-1686 (1999). [CrossRef]
  2. S. S. H. Yam, M. E. Marhic, Y. Akasaka, and L. G. Kazovsky, "Gain-clamped S-band discrete Raman amplifier," Opt. Lett. 29, 757-759 (2004). [CrossRef] [PubMed]
  3. S. K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, "Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band," Opt. Express 14, 3528-3540 (2006). [CrossRef] [PubMed]
  4. M. A. Arbore, "Application of fundamental-mode cutoff for novel amplifiers and lasers," in Proc. of OFC 2005, OFB4 (2005).
  5. M. A. Arbore, Y. Zhou, H. Thiele, J. Bromage, and L. Nelson, "S-band erbium-doped fiber amplifiers for WDM transmission between 1488 and 1508 nm," in Proc. of OFC 2003, WK2 (2003).
  6. H. Ono, M. Yamada, and M. Shimizu, "S-band erbium,-doped fiber amplifiers with a multistage configuration−design, characterization, and gain tilt compensation," J. Lightwave Technol. 21, 2240-2246 (2003). [CrossRef]
  7. J. B. Rosolem, A. A. Juriollo, R. Arradi, A. D. Coral, J. C. R. F. Oliveira, and M. A. Romere, "All silica S-band double-pass erbium-doped fiber amplifier," IEEE Photon. Technol. Lett. 17, 1399-1401 (2005). [CrossRef]
  8. K. Thyagarajan and C. Kakkar, "S-band single-stage EDFA with 25-dB gain using distributed ASE suppression," IEEE Photon. Technol. Lett. 16, 2448-2450 (2004). [CrossRef]
  9. M. Foroni, F. Poli, A. Cucinotta, and S. Selleri, "S-band depressed-cladding erbium-doped fiber amplifier with double-pass configuration," Opt. Lett. 31, 3228-3230 (2006). [CrossRef] [PubMed]
  10. H. Ahmad, N. K. Saat, and S. W. Harun, "Effect of doped-fiber’s spooling on performance of S-band EDFA," Laser Phys. Lett. 2, 412-414 (2005). [CrossRef]
  11. S. Yoo, Y. Jung, J. Kim, J. W. Lee and K. Oh, "W-type fiber design for application in U- and S-band amplifiers by controlling the LP01 mode long wavelength cut-off," Opt. Commun. 11, 332-345 (2005).
  12. S. Sudo, Optical Fiber Amplifiers: Materials, Devices, and Applications (Artech House, Boston, 1997), Chap. 2.
  13. T. Haruna, J. Iihara, K. Yamaguchi, Y. Saito, S. Ishikawa, M. Onishi, and T. Murata, "Local structure analyses around Er3+ in Er-doped fiber with Al-codoping," Opt. Express 14, 11036-11042 (2006). [CrossRef] [PubMed]
  14. M. Monerie, "Propagation in doubly clad single-mode fibers," IEEE J. Quantum Electron. QE-18, 535-542 (1982). [CrossRef]
  15. J. Kim, P. Dupriez, C. Codemard, J. Nilsson, and J. K. Sahu, "Suppression of stimulated Raman scattering in a high power Yb-doped fiber amplifier using a W-type core with fundamental mode cut-off," Opt. Express 14, 5103-5113 (2006). [CrossRef] [PubMed]
  16. N. K. Chen, S. Chi, and S. M. Tseng, "Wideband tunable fiber short-pass filter based on side-polished fiber with dispersive polymer overlay," Opt. Lett. 29, 2219-2221 (2004). [CrossRef] [PubMed]
  17. N. K. Chen, K. C. Hsu, S. Chi, and Y. Lai, "Tunable Er3+-doped fiber amplifiers covering S- and C + L-bands over 1490-1610 nm based on discrete fundamental-mode cutoff filters," Opt. Lett. 31, 2842-2844 (2006). [CrossRef] [PubMed]
  18. J. Villatoro, D. Monzon-Hernandez, and D. Luna-Moreno, "In-line tunable band-edge filter based on a single-mode tapered fiber coated with a dispersive material," IEEE Photon. Technol. Lett. 17, 1665-1667 (2005). [CrossRef]
  19. P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic Press, New York, 1998), Chap. 6.
  20. E. Desurvire. C. R. Giles, J. R. Simpson, and J. L. Zyskind, "Efficient erbium-doped fiber amplifier at a 1.53-μm wavelength with a high output saturation power," Opt. Lett. 14, 1266-1268 (1989). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited