OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 4 — Feb. 19, 2007
  • pp: 1480–1490

Radiation loss of a nanotaper: Singular Gaussian beam model

M. Sumetsky  »View Author Affiliations

Optics Express, Vol. 15, Issue 4, pp. 1480-1490 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (460 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents a model of a subwavelength diameter adiabatic microfiber taper (nanotaper), which allows an asymptotically accurate solution of the wave equation. The evanescent field near the nanotaper is expressed through a Gaussian beam having a singularity at the nanotaper axis. For certain values of parameters of the nanotaper, when it has a swell in the middle and narrows down to zero at the infinity, the nanotaper is lossless. For other values, when the nanotaper has a biconical shape, it exhibits an exponentially small radiation loss, which is determined as a tunneling rate through an effective parabolic potential barrier. The latter case represents an exceptional example of the radiation loss being distributed along the length of an adiabatic nanotaper rather than being localized near focal circumferences in the evanescent field region.

© 2007 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(190.0190) Nonlinear optics : Nonlinear optics
(230.7370) Optical devices : Waveguides

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: December 13, 2006
Revised Manuscript: February 4, 2007
Manuscript Accepted: February 5, 2007
Published: February 19, 2007

M. Sumetsky, "Radiation loss of a nanotaper: Singular Gaussian beam model," Opt. Express 15, 1480-1490 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003). [CrossRef] [PubMed]
  2. G. Brambilla, V. Finazzi, and D. J. Richardson, "Ultra-low-loss optical fiber nanotapers," Opt. Express 12, 2258-2263 (2004). [CrossRef] [PubMed]
  3. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, "Guidance properties of low-contrast photonic bandgap fibres," Opt. Express 12, 2864-2869 (2004). [CrossRef] [PubMed]
  4. K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003). [CrossRef] [PubMed]
  5. M. Sumetsky, "Optical fiber microcoil resonator," Opt. Express 12, 2303-2316 (2004). [CrossRef] [PubMed]
  6. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, "The Microfiber Loop Resonator: Theory, Experiment, and Application," J. Lightwave Technol. 24, 242-250 (2006). [CrossRef]
  7. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and J. W. Nicholson, "Probing optical microfiber nonuniformities at nanoscale," Opt. Lett. 31, 2393-2395 (2006). [CrossRef] [PubMed]
  8. X. Jiang, Q. Yang, G. Vienne, Y. Li, L. Tong, J. Zhang, L. Hu, "Demonstration of microfiber knot laser," Appl. Phys. Lett. 89, Art. 143513 (2006) [CrossRef]
  9. A. W. Snyder and J. D. Love, Optical waveguide theory (Chapman and Hall, London, 1983).
  10. W. L. Kath and G A. Kriegsmann, "Optical tunnelling: radiation losses in bent fibre-optic waveguides," IMA J. Appl. Math. 41, 85-103 (1988). [CrossRef]
  11. M. Sumetsky, "How thin can a microfiber be and still guide light?" Opt. Lett. 31, 870-872 (2006). [CrossRef] [PubMed]
  12. M. Sumetsky, "How thin can a microfiber be and still guide light? Errata," Opt. Lett. 31, 3577-3578 (2006). [CrossRef]
  13. M. Sumetsky, "Optics of tunneling from adiabatic nanotapers," Opt. Lett. 31, 3420-3422 (2006). [CrossRef] [PubMed]
  14. L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, "Photonic nanowires directly drawn from bulk glasses," Opt. Express 14, 82-87 (2006). [CrossRef] [PubMed]
  15. A. D. Capobianco, M. Midrio, C. G. Someda, and S. Curtarolo, "Lossless tapers, Gaussian beams, free-space modes: Standing waves versus through-flowing waves," Opt. Quantum Electron. 32, 1161-1173 (2000). [CrossRef]
  16. V. M. Babič and V. S. Buldyrev, Short-wavelength diffraction theory (Springer, Berlin, 1991).
  17. M. Sumetskii, "Tunnel effect at the boundary of state stability: optical cavity and highly excited hydrogen atom in a magnetic field," Sov. Phys. JETP,  67, 49-59 (1988).
  18. J. Heading, Phase Integral Methods (New York, Wiley, 1962).
  19. L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon, Oxford, 1965, 2nd edition).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited