OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 4 — Feb. 19, 2007
  • pp: 1567–1578

A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires

Wim Bogaerts, Dirk Taillaert, Pieter Dumon, Dries Van Thourhout, Roel Baets, and Elroy Pluk  »View Author Affiliations


Optics Express, Vol. 15, Issue 4, pp. 1567-1578 (2007)
http://dx.doi.org/10.1364/OE.15.001567


View Full Text Article

Enhanced HTML    Acrobat PDF (1007 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a wavelength duplexer based on a compact arrayed waveguide grating (AWG) in silicon-on-insulator (SOI) photonic wire waveguides. Polarization insensitive operation is achieved through a special polarization diversity approach in which we use 2-D grating fiber couplers as integrated polarization splitters. To mitigate the effects of process variations, we propagated both polarizations in opposite directions through the same AWG with a mere 600×350μm2 footprint. This resulted in an on-chip insertion loss between −2.1dB and −6.9dB, crosstalk of −15dB, and only 0.66dB polarization dependent loss. This is the first demonstration of a functional polarization-diversity circuit implemented in SOI nanophotonic waveguides, including interfaces to single-mode fiber.

© 2007 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.1750) Integrated optics : Components
(130.3120) Integrated optics : Integrated optics devices

ToC Category:
Integrated Optics

History
Original Manuscript: January 8, 2007
Revised Manuscript: February 9, 2007
Manuscript Accepted: February 9, 2007
Published: February 19, 2007

Citation
Wim Bogaerts, Dirk Taillaert, Pieter Dumon, Dries Van Thourhout, Roel Baets, and Elroy Pluk, "A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires," Opt. Express 15, 1567-1578 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-4-1567


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Bogaerts, P. Dumon, D. Van Thourhout, D. Taillaert, P. Jaenen, J. Wouters, B. S., V. Wiaux, and R. Baets, "Compact Wavelength-Selective Functions in Silicon-on-Insulator Photonic Wires," J. Sel. Top. Quantum Electron. 12(6), 1394-1401 (2006). [CrossRef]
  2. C. Gunn, "Silicon photonics - Poised to invade local area networks," Photonics Spectra 40(3), 62-68 (2006).
  3. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, "Nanophotonic Waveguides in Silicon-on-Insulator fabricated with CMOS technology," J. Lightwave Technol. 23(1), 401-412 (2005). [CrossRef]
  4. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV Lithography," IEEE Photon. Technol. Lett. 16(5), 1328-1330 (2004). [CrossRef]
  5. G. Reed, G. Mashanovich, W. Headley, B. Timotijevic, F. Gardes, S. Chan, P. Waugh, N. Emerson, C. Png, M. Paniccia, A. Liu, D. Hak, and V. Passaro, "Issues associated with polarization independence in Silicon Photonics," J. Sel. Top. Quantum Electron. 12(6), 1335-1344 (2006). [CrossRef]
  6. C. Doerr, M. Zimgibl, C. Joyner, L. Stultz, and H. Presby, "Polarization diversity Waveguide Grating Receiver with Integrated Optical Amplifiers," IEEE Photon. Technol. Lett. 9, 85 (1997). [CrossRef]
  7. T. Barwicz, M. Watts, M. Popovic, P. Rakich, L. Socci, F. Kartner, E. Ippen, and H. Smith, "Polarizationtransparent microphotonic devices in the strong confinement limit," Nature Photonics 1, 57-60 (2007). [CrossRef]
  8. D. Taillaert, H. Chong, P. Borel, L. Frandsen, R. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon Technol. Lett. 15(9), 1249-1251 (2003). [CrossRef]
  9. D. Taillaert and R. Baets, "Fiber-to-waveguide coupler," US Patent 7,065,272 B2 (2005).
  10. P. Urban, E. Pluk, E. Klein, A. Koonen, G. Khoe, and H. de Waardt, "Simulation Results of dynamically reconfigurable Broadband Photonic Access Networks (BB Photonics)," in 2nd IET International Conference on Access Technologies (ICAT), p. 93 (Cambridge, UK, 2006).
  11. R. Roy, G. Manhoudt, C. Roeloffzen, and W. van Etten, "Control and management scheme in a DWDM EPON," in Proceedings of the 8th International Conference on Transparent Optical Networks (ICTON), p. Tu.D1.6 (Nottingham,UK, 2006).
  12. D. Taillaert, P. Bienstman, and R. Baets, "Compact efficient broadband grating coupler for silicon-on-insulator waveguides," Opt. Lett. 29(23), 2749-2751 (2004). [CrossRef] [PubMed]
  13. W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, "Basic structures for photonic integrated circuits in Silicon-on-insulator," Opt. Express 12(8), 1583-1591 (2004). [CrossRef] [PubMed]
  14. D. Taillaert, W. Bogaerts, P. Bienstman, T. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," J. Quantum Electron. 38(7), 949-955 (2002). [CrossRef]
  15. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Top. Quantum Electron. 11(1), 232-240 (2005). [CrossRef]
  16. K. Sasaki, F. Ohno, A. Motegi, and T. Baba, "Arrayed waveguide grating of 70 ラ 60 μm2 size based on Si photonic wire waveguides," Electron. Lett. 41(14), 801-802 (2005). [CrossRef]
  17. P. Dumon,W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, "Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array," Opt. Express 14(2), 664-669 (2006). [CrossRef] [PubMed]
  18. C. R. Doerr, "Planar Lightwave Devices for WDM," in Optical Fiber Telecommunications, I. P. Kaminow and T. Li, eds., Vol. IV A, Chap. 9, pp. 405 - 476 (Academic Press, ISBN 0-12-395172-0, 2002).
  19. D. Dai and S. He, "Accurate two-dimensional model of an arrayed-waveguide grating demultiplexer and optimal design based on the reciprocity theory," J. Opt. Soc. Am. A 21(12), 2392-2398 (2004). [CrossRef]
  20. Y. Barbarin, X. Leijtens, E. Bente, L. C.M., K. J.R., and M. Smit, "Extremely small AWG demultiplexer fabricated on InP by using a double-etch process," IEEE Photon. Technol. Lett. 16(11), 2478-2480 (2004). [CrossRef]
  21. Y. Hida, Y. Hibino, M. Itoh, A. Sugita, A. Himeno, and Y. Ohmori, "Fabrication of low-loss and polarisationinsensitive 256 channel arrayed-waveguide grating with 25 GHz spacing using 1.5%Δ waveguides," Electron. Lett. 36(9), 820-821 (2000). [CrossRef]
  22. Y. Hibino, "Recent advances in high-density and large-scale AWG multi/demultiplexers with higher indexcontrast silica-based PLCs," J. Lightwave Technol. 8(6), 1090-1101 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited