OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 4 — Feb. 19, 2007
  • pp: 1762–1772

Simplified calculation of dipole energy transport in a multilayer stack using dyadic Green’s functions

K. Celebi, T. D. Heidel, and M. A. Baldo  »View Author Affiliations


Optics Express, Vol. 15, Issue 4, pp. 1762-1772 (2007)
http://dx.doi.org/10.1364/OE.15.001762


View Full Text Article

Enhanced HTML    Acrobat PDF (538 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We extend the model of Chance, Prock and Silbey[1] and analytically determine the Poynting vector in the direction perpendicular to the plane of a multilayer organic device. The result is used to predict the spatial profile of Förster energy transfer, the radiative output of an organic light emitting device, and to calculate the efficiency of surface plasmon polariton-mediated energy transfer across a thin silver film.

© 2007 Optical Society of America

OCIS Codes
(230.4170) Optical devices : Multilayers
(250.3680) Optoelectronics : Light-emitting polymers
(250.5230) Optoelectronics : Photoluminescence
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Optics at Surfaces

History
Original Manuscript: January 24, 2007
Revised Manuscript: February 9, 2007
Manuscript Accepted: February 11, 2007
Published: February 19, 2007

Citation
K. Celebi, T. D. Heidel, and M. A. Baldo, "Simplified calculation of dipole energy transport in a multilayer stack using dyadic Green’s functions," Opt. Express 15, 1762-1772 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-4-1762


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. R. Chance, A. Prock and R. Silbey, "Molecular fluorescence and energy transfer near metal interfaces," in Advances in Chemical Physics, I. Prigogine and S. A. Rice, eds. (Wiley, 1978), Vol. 37,pp. 1-65.
  2. V. Bulovic, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov and S. R. Forrest, "Weak Microcavity Effects in Organic Light Emitting Devices," Phys. Rev. B 58, 3730-3740 (1998). [CrossRef]
  3. M. H. Lu and J. C. Sturm, "External coupling efficiency in planar organic light-emitting devices," Appl. Phys. Lett. 78, 1927-1929 (2001). [CrossRef]
  4. M. H. Lu and J. C. Sturm, "Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment," J. Appl. Phys. 91, 595-604 (2002). [CrossRef]
  5. T. Förster, "Transfer mechanisms of electronic excitation," Disc. Faraday Soc. 27, 7-17 (1959).
  6. C.-T. Tai, Dyadic Green's functions in electromagnetic theory (IEEE Press, 1994).
  7. R. L. Hartman, "Green dyadic calculations for inhomogeneous optical media," J. Opt. Soc. Am. A 17, 1067-1076 (2000). [CrossRef]
  8. R. L. Hartman, S. M. Cohen and P. T. Leung, "A note on the green dyadic calculation of the decay rates for admolecules at multiple planar interfaces," J. Chem. Phys. 110, 2189-2194 (1999). [CrossRef]
  9. M. Segal, M. A. Baldo, R. J. Holmes, S. R. Forrest and Z. G. Soos, "Excitonic singlet-triplet ratios in molecular and polymeric organic materials," Phys. Rev. B 68, 075211 (2003). [CrossRef]
  10. P. Andrew and W. L. Barnes, "Energy transfer across a metal film mediated by surface plasmon polaritons," Science 306, 1002-1005 (2004). [CrossRef] [PubMed]
  11. P. Andrew and W. L. Barnes, "Forster energy transfer in an optical microcavity," Science 290, 785-788 (2000). [CrossRef] [PubMed]
  12. D. M. Basko, G. C. La Rocca, F. Bassani and V. M. Agranovich, "Electronic energy transfer in a planar microcavity," Physica Status Solidi A 190, 379-382 (2002). [CrossRef]
  13. D. Z. Garbuzov, V. Bulovic, P. E. Burrows and S. R. Forrest, "Photoluminescence efficiency and absorption of aluminum-tris-quinolate (Alq3) thin films," Chem. Phys. Lett. 249, 433-437 (1996). [CrossRef]
  14. H. Mattoussi, H. Murata, C. D. Merritt, Y. Iizumi, J. Kido and Z. H. Kafafi, "Photoluminescence quantum yield of pure and molecularly doped organic solid films," J. Appl. Phys. 86, 2642-2650 (1999). [CrossRef]
  15. D. Magde, R. Wong and P. G. Seybold, "Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: Improved absolute standards for quantum yields," Photochem. Photobiol. 75, 327-334 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited