OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 4 — Feb. 19, 2007
  • pp: 1832–1844

Tunable one-dimensional photonic crystal slabs based on preferential etching of silicon-on-insulator

D. C. Zografopoulos, E. E. Kriezis, B. Bellini, and R. Beccherelli  »View Author Affiliations


Optics Express, Vol. 15, Issue 4, pp. 1832-1844 (2007)
http://dx.doi.org/10.1364/OE.15.001832


View Full Text Article

Acrobat PDF (810 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We design and assess a one-dimensional photonic crystal slab fabricated by preferential etching of a silicon-on-insulator substrate. The etched grooves are considered to be infiltrated by a highly-birefringent nematic liquid crystalline material. A detailed analysis of the nematic director response within the grooves is presented. We investigate different configurations and demonstrate large band gap shifting when switching the liquid crystal with an applied voltage. Furthermore, we assess this type of device as an efficient alternative for compact refractometric optical sensing applications.

© 2007 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(230.3720) Optical devices : Liquid-crystal devices
(230.3990) Optical devices : Micro-optical devices
(250.0250) Optoelectronics : Optoelectronics

ToC Category:
Photonic Crystals

History
Original Manuscript: December 4, 2006
Revised Manuscript: January 17, 2007
Manuscript Accepted: January 18, 2007
Published: February 19, 2007

Citation
D. C. Zografopoulos, E. E. Kriezis, B. Bellini, and R. Beccherelli, "Tunable one-dimensional photonic crystal slabs based on preferential etching of silicon-on-insulator," Opt. Express 15, 1832-1844 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-4-1832


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. C. Weisbuch, E. Schwoob, S. Olivier, H. Benisty, A. Talneau, G.-H. Duan, T. F. Krauss, C. J. M. Smith, R. Houdré, R. Ferrini, and M. Agio, "Towards real-world devices in InP-based PCs," Proc. SPIE 5360, 77-90 (2004).
  2. "Photonic crystals and related photonic nanostructures," Jap. J. Appl. Phys. 45, Part 1 (8A) (2006).
  3. M. Bertolotti, "Wave interactions in photonic band structures: an overview," J. Opt. A: Pure Appl. Opt. 8, S9-S32 (2006). [CrossRef]
  4. A.M. Merzlikin and A.P. Vinogradov, "Superprism effect in 1D photonic crystal," Opt. Commun. 259, 700-703 (2006). [CrossRef]
  5. D. Yudistira, H.J.W.M. Hoekstra, M. Hammer, and D.A.I. Marpaung, "Slow light excitation in tapered 1D photonic crystals: theory," Opt. Quantum Electron. 38, 161-176 (2006). [CrossRef]
  6. G.P. Wang, Y. Yi, and W. Lin, "Tunable and omnidirectional photonic bandgap properties of one-dimensional photonic crystals fabricated by holography," J. Opt. Soc. Am. B 21, 554-561 (2004). [CrossRef]
  7. R. Ozaki, M. Ozaki, and K. Yoshino, "Defect mode in one-dimensional photonic crystal with in-plane switchable nematic liquid crystal defect layer," Jap. J. Appl. Phys.,  43, L1477-L1479 (2004). [CrossRef]
  8. V.A. Tolmachev, E.V. Astrova, J.A. Pilyugina, T.S. Perova, R.A. Moore, and J.K. Vij, "1D photonic crystal fabricated by wet etching of silicon," Opt. Mater. 27, 831-835 (2005). [CrossRef]
  9. J. Čtyroký, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petráček, P. Lalanne, J.-P. Hugonin, and R.M. De La Rue, "Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task," Opt. Quantum Electron. 34, 455-470 (2002). [CrossRef]
  10. D. Gerace and L.C. Andreani, "Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs," Phys. Rev. E 69, 056603 (2004). [CrossRef]
  11. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," J. Lightwave Technol. 23, 401-412 (2005). [CrossRef]
  12. R. Ferrini, R. Houdré, H. Benisty, M. Qiu, and J. Moosburger, "Radiation losses in planar photonic crystals: two-dimensional representation of hole depth and shape by an imaginary dielectric constant," J. Opt. Soc. Am. B 20, 469-478 (2003).
  13. Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, "Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes," Appl. Phys. Lett. 82, 1661-1663 (2003). [CrossRef]
  14. J. Haneveld, H. Jansen, E. Berenschot, N. Tas, and M. Elwenspoek, "Wet anisotropic etching for fluidic 1D nanochannels," J. Micromech. Microeng. 13, S62-S66 (2003). [CrossRef]
  15. A.S. Holmes, "Microengineering: the next revolution?," available on: http://www3.imperial.ac.uk/portal/pls/portallive/docs/1/185938.PDF
  16. L. De Stefano, K. Malecki, M. Rossi, L. Rotiroti, F.G. Della Corte, L. Moretti, and I. Rendina, "Integrated silicon-glass opto-chemical sensors for lab-on-chip applications," Sens. Actuators B 114, 625-630 (2006).
  17. B. Bellini, J.-F. Larchanché, J.-P. Vilcot, D. Decoster, R. Beccherelli, and A. d’Alessandro, "Photonic devices based on preferential etching," Appl. Opt. 44, 7181-7186 (2005). [CrossRef]
  18. B. Wild, R. Ferrini, R. Houdré, M. Mulot, S. Anand, and C. J. M. Smith, "Temperature tuning of the optical properties of planar photonic crystal microcavities," Appl. Phys. Lett. 84, 846-848 (2004). [CrossRef]
  19. R. Ferrini, J. Martz, L. Zuppiroli, B. Wild, V. Zabelin, L. A. Dunbar, R. Houdré, M. Mulot, and S. Anand, "Planar photonic crystals infiltrated with liquid crystals: optical characterization of molecule orientation," Opt. Lett. 31, 1238-1240 (2006). [CrossRef]
  20. E.P. Kosmidou, E.E. Kriezis, and T.D. Tsiboukis, "Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects," IEEE J. Quantum Electron. 41, 657-665 (2005). [CrossRef]
  21. E.P. Kosmidou, E.E. Kriezis, and T.D. Tsiboukis, "Analysis of tunable photonic crystal directional couplers," J. Appl. Phys. 100, 043118 (2006).
  22. SOITEC website: http://www.soitec.com.
  23. B. Bellini, M.A. Geday, N. Bennis, A. Spadlo, X. Quintana, J.M. Otón, and R. Dąbrowski, "Design and simulation of single-electrode liquid crystal phased arrays," Opto-Electr.Rev. 14, 269-273 (2006).
  24. H. Desmet, K. Neyts, and R. Baets, "Modeling nematic liquid crystals in the neighborhood of edge," J. Appl. Phys. 98, 123517 (2005). [CrossRef]
  25. R. Beccherelli, I.G. Manolis, and A. d’Alessandro, "Characterisation of photoalignment materials for photonic applications at visible and infrared wavelength," Mol. Cryst. Liq. Cryst 429, 227-235 (2005). [CrossRef]
  26. A. Muravsky, "Photo-induced alignment technology for 3-D surface profiles of LCD substrates", Proc. LCP Conference (2006).
  27. S.G. Johnson and J.D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173.
  28. I. W. Stewart, "The Static and Dynamic Continuum Theory of Liquid Crystals," (Taylor & Francis, April 2004).
  29. F. A. Fern’andez, S. E. Day, P. Trwoga, H. F. Deng, and R. James, "Three-dimensional modelling of liquid crystal display cells using finite elements," Mol. Cryst. Liq. Cryst. 375, 291-299 (2002). [CrossRef]
  30. E. E. Kriezis and S. J. Elston, "Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method," Opt. Commun. 177, 69-77 (2000). [CrossRef]
  31. C. V. Brown, E. E. Kriezis, and S. J. Elston, "Rigorous analysis of the diffraction from a liquid crystal phase grating," J. Appl. Phys. 91, 3495-3500 (2002). [CrossRef]
  32. W.C.L. Hopman, P. Potier, D. Yudistira, J. van Lith, P.V. Lambeck, R.M. De La Rue, A. Driessen, H.J.W.M. Hoekstra, and R.M. de Ridder, "Quasi-one-dimensional photonic crystal as a compact building-block for refratometric optical sensors," IEEE J. Sel. Top. Quantum Electron. 11, 11-16 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited