OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 5 — Mar. 5, 2007
  • pp: 1995–2007

The use of equivalent size distributions of natural phytoplankton assemblages for optical modeling

S. Bernard, F.A. Shillington, and T.A. Probyn  »View Author Affiliations

Optics Express, Vol. 15, Issue 5, pp. 1995-2007 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (478 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The effective cell size is expected to be one of the principal causes of variability in the inherent optical properties (IOPs) of a phytoplankton population. However, establishing simple size descriptors is complicated by the typically complex particle size distributions of natural phytoplankton assemblages. This study compares the use of measured and equivalent particle size distributions on the modeled IOPs of a wide range of natural phytoplankton assemblages. It demonstrates that several equivalent size distributions, using simple parameterizations of complex size distributions based on the effective radius or diameter, are capable of modeling phytoplankton IOPs with sufficient accuracy for further use in marine bio-optical models. The results offered here are expected to be of use in bio-optical studies of phytoplankton dynamics e.g. harmful algal bloom oriented inverse reflectance models.

© 2007 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(290.4020) Scattering : Mie theory

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: September 13, 2006
Revised Manuscript: November 23, 2006
Manuscript Accepted: November 28, 2006
Published: March 5, 2007

Virtual Issues
Vol. 2, Iss. 4 Virtual Journal for Biomedical Optics

S. Bernard, F. A. Shillington, and T. A. Probyn, "The use of equivalent size distributions of natural phytoplankton assemblages for optical modeling," Opt. Express 15, 1995-2007 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. V. Finkel and A. J. Irwin, "Modelling size-dependent photosynthesis: light absorption and the allometric rule," J. Theor. Biol. 204, 361-369 (2000) [CrossRef] [PubMed]
  2. A. Morel and A. Bricaud, "Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton," Deep-Sea Res. 28, 1375-1393 (1981). [CrossRef]
  3. D. J. S. Montagnes, J. A. Berges, P. J. Harrison and F. J. R. Taylor, "Estimating carbon, nitrogen, protein, and chlorophyll a from cell volume in marine phytoplankton," Limnol. Oceanogr. 39,1044-1060 (1994). [CrossRef]
  4. J. Rodriguez, J. Tintore, J. T. Allen, J. M. Blanco, D. Gomis, A. Reul, J. Ruiz, V. Rodriguez, F. Echevarria and F. Jimenez-Gomez, "Mesoscale vertical motion and the size structure of phytoplankton in the ocean," Nature 410, 360-363 (2001). [CrossRef] [PubMed]
  5. E. Boss, M. S. Twardowski and S. Herring, "Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution," Appl. Opt. 40, 4885-4893 (2001). [CrossRef]
  6. A. Bricaud and A. Morel, "Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling," Appl. Opt. 25, 571-580 (1986). [CrossRef] [PubMed]
  7. D. Risović, "Two component model of sea particle size distribution," Deep-Sea Res. 40, 1459-1473 (1993). [CrossRef]
  8. M. Jonasz and G. Fournier, "Approximation of the size distribution of marine particles by a sum of log-normal functions," Limnol. Oceanogr. 41, 744-754 (1996). [CrossRef]
  9. E. C. Junge, Air chemistry and radioactivity (Academic Press 1963), pp.382.
  10. R. W. Sheldon, A. Prakash and W. H. Sutcliffe, Jr., "The size distribution of particles in the ocean," Limnol. Oceanogr. 17, 327-340 (1972). [CrossRef]
  11. S. Bernard, T. A. Probyn and R. G. Barlow, "Measured and modelled optical properties of particulate matter in the southern Benguela," S. Afr. J. Sci. 97, 410-420 (2001).
  12. Y. X. Hu and K. Stamnes, "An accurate Parameterization of Cloud Radiative Properties Suitable for Climate Modeling," J. Climate. 6, 728-742 (1993). [CrossRef]
  13. M. D. Alexandrov and A. A. Lacis, "A new three-parameter cloud/aerosol particle size distribution based on the generalized inverse Gaussian density function," Appl. Math. Comput. 116, 153-165 (2000) [CrossRef]
  14. R. McGraw, S. Nemesure and S. E. Schwartz, "Properties and evolution of aerosols with size distributions having identical moments," J. Aerosol. Sci. 29, 761-772 (1998). [CrossRef]
  15. J. E. Hansen and L. D. Travis, "Light scattering in planetary atmospheres," Space. Sci. Rev. 16, 527-610 (1974). [CrossRef]
  16. C. S. Yentsch, "Measurement of visible light absorption by particulate matter in the ocean," Limnol. Oceanogr. 7, 207-217 (1962). [CrossRef]
  17. C. S. Roesler, "Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique," Limnol. Oceanogr. 43, 1649-1660 (1998). [CrossRef]
  18. M. Kishino, M. Takahashi, N. Okami and S. Ichimura, "Estimation of the spectral absorption coefficients of phytoplankton in the sea," Bull. Mar. Sci. 37, 634-642 (1985).
  19. D. Stramski and J. Piskozub, "Estimation of scattering error in spectrophotometric measurements of light absorption by aquatic particles from 3-D radiative transfer equations," Appl. Opt.,  42, 3634-46 (2003). [CrossRef] [PubMed]
  20. D. Stramski, A. Bricaud and A. Morel, "Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community," Appl. Opt. 40, 2929-2945 (2001). [CrossRef]
  21. R. G. Barlow, D. G. Cummings and S. W. Gibb, "Improved resolution of mono- and divinyl chlorophylls a and b and zeaxanthin and lutein in phytoplankton extracts using reverse phase C-8 HPLC," Mar. Ecol. Prog. Ser. 161, 303-307 (1997). [CrossRef]
  22. A. Morel and A. Bricaud, "Inherent properties of algal cells including picoplankton: theoretical and experimental results," Can. Bull. Fish. Aquat. Sci.,  214, 521-559 (1986).
  23. H. C. Van de Hulst, Light Scattering by Small Particles (Wiley 1957), pp. 470.
  24. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley and Sons, 1983), pp. 530.
  25. A. Bricaud, A. L. Bedhomme and A. Morel, "Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation," J. Plankton Res. 10, 851-873 (1988). [CrossRef]
  26. A. L. Aden and M. Kerker, "Scattering of electromagnetic waves from two concentric spheres," J. Appl. Phys. 22, 1242-1246 (1951). [CrossRef]
  27. O. B. Toon, and T. P. Ackerman, "Algorithms for the calculation of scattering by stratified spheres," Appl. Opt. 20, 3657-3660 (1981). [CrossRef] [PubMed]
  28. A. Morel, "Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 water)," J. Geophys. Res.,  93, 10,749-10,768 (1988). [CrossRef]
  29. A. M. Ciotti, M. R. Lewis and J. J. Cullen, "Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient," Limnol. Oceanogr. 47, 404-417 (2002). [CrossRef]
  30. M. I. Mishchenko and A. A. Lacis, "Morphology-dependent resonances of nearly spherical particles in random orientation," Appl. Opt. 42, 5551-5556 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited