OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 5 — Mar. 5, 2007
  • pp: 2204–2218

Customized computer models of eyes with intraocular lenses

P. Rosales and S. Marcos  »View Author Affiliations

Optics Express, Vol. 15, Issue 5, pp. 2204-2218 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (490 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We compared experimental wave aberrations in pseudophakic eyes with aspheric intraocular lenses (IOLs) to simulate aberrations from numerical ray tracing on customized computer eye models using corneal topography, angle λ, ocular biometry, IOL geometry, and IOL tilt and decentration measured on the same eyes. We found high correlations between real and simulated aberrations even for the eye with only the cornea, and these increased on average when the IOL geometry and position were included. Relevant individual aberrations were well predicted by the complete eye model. Corneal spherical aberration and horizontal coma were compensated by the IOL, and in 58.3% of the cases IOL tilt and decentration contributed to compensation of horizontal coma. We conclude that customized computer eye models are a good representation of real eyes with IOLs and allow understanding of the relative contribution of optical, geometrical and surgically-related factors to image quality. Corneal spherical aberration is reduced by aspheric IOLs, although other corneal high order aberrations are still a major contributor to total aberrations in pseudophakic eyes. Tilt and decentration of the IOLs represent a relatively minor contribution of the overall optical quality of the eye.

© 2007 Optical Society of America

OCIS Codes
(080.1010) Geometric optics : Aberrations (global)
(120.3620) Instrumentation, measurement, and metrology : Lens system design
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(330.5370) Vision, color, and visual optics : Physiological optics

Original Manuscript: December 4, 2006
Revised Manuscript: February 5, 2007
Manuscript Accepted: February 7, 2007
Published: March 5, 2007

Virtual Issues
Vol. 2, Iss. 4 Virtual Journal for Biomedical Optics

P. Rosales and S. Marcos, "Customized computer models of eyes with intraocular lenses," Opt. Express 15, 2204-2218 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, Oxford, 2000).
  2. R. Navarro, J. Santamaría, and J. Bescós, "Accommodation-dependent model of the human eye with aspherics," J. Opt. Soc. Am. A 2, 1273-1281 (1985). [CrossRef] [PubMed]
  3. I. Escudero-Sanz and R. Navarro, "Off-axis aberrations of a wide-angle schematic eye model," J. Opt. Soc. Am. A 16, 1-11 (1999). [CrossRef]
  4. J. Mclellan, S. Marcos, and S. Burns, "Age-related changes in monochromatic wave aberrations in the human eye," Invest. Ophthalmol. Visual. Sci. 42, 1390-1395 (2001).
  5. J. C. He, S. A. Burns, and S. Marcos, "Monochromatic aberrations in the accommodated human eye," Vision. Res 40, 41-48 (2000). [CrossRef] [PubMed]
  6. S. Barbero, S. Marcos, and I. Jimenez-Alfaro, "Optical aberrations of intraocular lenses measured in vivo and in vitro," J. Opt. Soc. Am. A 20, 1841-1851 (2003). [CrossRef]
  7. L. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variation of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A 19, 2329-2348 (2002). [CrossRef]
  8. F. J. Castejon-Mochon, N. Lopez-Gil, A. Benito, and P. Artal, "Ocular wave-front aberration statistics in a normal young population," Vision. Res 42, 1611-1617 (2002). [CrossRef] [PubMed]
  9. S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, "Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes," Vision. Res 41, 3861-3871 (2001). [CrossRef] [PubMed]
  10. S. Barbero, S. Marcos, J. Merayo-Lloves, and E. Moreno-Barriuso, "Validation of the estimation of corneal aberrations from videokeratography in keratoconus," J. Cataract. Refract. Surg 18, 263-270 (2002).
  11. M. Dubbelman, V. Sicam, and G. L. Van der Heijde, "The shape of the anterior and posterior surface of the aging human cornea," Vision. Res 46, 993-1001 (2006). [CrossRef]
  12. W. Drexler, A. Baumgartner, O. Findl, C. Hitzenberger, H. Sattmann, and A. Fercher, "Submicrometer precision biometry of the anterior segment of the human eye," Invest. Ophthalmol. Visual. Sci. 38, 1304-1313 (1997).
  13. D. Mutti, K. Zadnik, and A. Adams, "A video technique for phakometry of the human crystalline lens," Invest. Ophthalmol. Visual. Sci. 33, 1771-1782 (1992).
  14. L. F. Garner, "Calculation of the radii of curvature of the crystalline lens surfaces," Ophthalmic Physiol. Opt. 17(1), 75-80 (1997). [CrossRef] [PubMed]
  15. M. Dubbelman, G. van der Heijde, and H. Weeber, "The thickness of the aging human lens obtained from corrected Scheimpflug images," Optom. Vision Sci 78, 411-416 (2001). [CrossRef]
  16. M. Dubbelman and G. L. Van der Heijde, "The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox," Vision. Res. 41, 1867-1877 (2001). [CrossRef] [PubMed]
  17. J. Koretz, C. Cook, and P. Kaufman, "Aging of the human lens: changes in lens shape at zero-diopter accommodation," J. Opt. Soc. Am. A 18, 265-272 (2001). [CrossRef]
  18. P. Phillips, J. Perez-Emmanuelli, H. D. Rosskothen, and C. J. Koester, "Measurement of intraocular lens decentration and tilt in vivo," J. Cataract. Refract. Surg 14, 129-135 (1988). [PubMed]
  19. J. C. Barry, M. Dunne, and T. Kirschkamp, "Phakometric measurement of ocular surface radius of curvature and alignment: evaluation of method with physical model eyes," Ophthalmic Physiol. Opt. 21, 450-460 (2001). [CrossRef] [PubMed]
  20. P. Rosales and S. Marcos, "Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements," J. Opt. Soc. Am. A 23,509-520 (2006). [CrossRef]
  21. D. A. Atchison, "Optical design of intraocular lenses. I. On-axis performance," Optom. Vision Sci 66, 492-506 (1989). [CrossRef]
  22. D. A. Atchison, "Design of aspheric intraocular lenses," Ophthalmic Physiol. Opt. 10, 57-66 (1990).
  23. J. Holladay, P. Piers, G. Koranyi, M. van der Mooren, and N. Norrby, "A new intraocular lens design to reduce spherical aberration of pseudophakic eyes," J. Cataract. Refract. Surg 18, 683-691 (2002).
  24. P. Artal, S. Marcos, R. Navarro, I. Miranda, and M. Ferro, "Through-focus image quality of eyes implanted with monofocal and multifocal intraocular lenses," Opt. Eng 34, 772-779 (1995). [CrossRef]
  25. A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, "Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted," Arch. Ophthalmol 120, 1143-1151 (2002). [PubMed]
  26. S. Marcos, B. Barbero, and I. Jimenez Alfaro, "Optical quality and depth-of-field of eyes implanted with spherical and aspheric intraocular lenses," J. Cataract. Refract. Surg 21, 223-235 (2005).
  27. U. Mester, P. Dillinger, and N. Anterist, "Impact of a modified optic design on visual function: clinical comparative study," J. Cataract. Refract. Surg 29, 653-660 (2003). [CrossRef]
  28. K. M. Rocha, E. S. Soriano, M. R. Chalita, A. C. Yamada, K. Bottós, J. Bottós, L. Morimoto, and W. Nosé, "Wavefront analysis and contrast sensitivity of aspheric and spherical intraocular lenses: a randomized prospective study," Am. J. Ophthalmol. 142, 750-756 (2006). [CrossRef] [PubMed]
  29. K. Pesudovs, H. Dietze, O. Stewart, N. B, and M. Cox, "Effect of cataract surgery incision location and intraocular lens type on ocular aberrations," J. Cataract. Refract. Surg 31, 725-734 (2005). [CrossRef] [PubMed]
  30. A. Guirao, J. Tejedor, and P. Artal, "Corneal aberrations before and after small-incision cataract surgery," Invest. Ophthalmol. Visual. Sci. 45,4312-4319 (2004). [CrossRef]
  31. S. Marcos, P. Rosales, L. Llorente, and I. Jimenez-Alfaro, "Change of corneal aberrations after cataract surgery with two types of aspheric intraocular lenses.," J. Cataract. Refract. Surg 33, 217-226 (2007). [CrossRef] [PubMed]
  32. L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, "Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations" J. Vision 4, 288-298 (2004). [CrossRef]
  33. E. Moreno-Barriuso and R. Navarro, "Laser Ray Tracing versus Hartmann-Shack Sensor for Measuring Optical Aberrations in the Human Eye," J. Opt. Soc. Am. A 17, 974-985 (2000). [CrossRef]
  34. S. Marcos, L. Díaz-Santana, L. Llorente, and D. C., "Ocular aberrations with ray tracing and Shack-Hartmann wavefront sensors: does polarization play a role?" J. Opt. Soc. Am. A 19, 1063-1072 (2002). [CrossRef]
  35. E. Moreno-Barriuso, S. Marcos, R. Navarro, and S. A. Burns, "Comparing Laser Ray Tracing, Spatially Resolved Refractometer and Hartmann-Shack sensor to measure the ocular wavefront aberration," Invest. Ophthalmol. Visual. Sci. 78, 152 - 156 (2001).
  36. L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, and S. Marcos, "Aberrations of the human eye in visible and near infrared illumination.," Optom. Vision Sci 80, 26-35 (2003). [CrossRef]
  37. R. Applegate, L. Thibos, A. Bradley, S. Marcos, A. Roorda, T. Salmon, and D. Atchison, "Reference axis selection: subcommittee Report of the OSA working group to establish standards for measurement and reporting of optical aberrations of the eye," J. Cataract. Refract. Surg 16, 656-658 (2000).
  38. C. Campbell, "Reconstruction of the corneal shape with the MasterVue Corenal Topography System," Optom. Vision Sci 74, 899-905 (1997). [CrossRef]
  39. J. Schwiegerling, J. Greivenkamp, and J. Miller, "Representation of videokeratoscopic height data with Zernike polynomials," J. Opt. Soc. Am. A 12, 2105-2113 (1995). [CrossRef]
  40. P. Rosales, M. Dubbelman, S. Marcos, and G. L. Van der Heijde, "Crystalline radii of curvature from Pukinje and Scheimpflug imaging," J. Vision 6, 1057-1067 (2006). [CrossRef]
  41. A. de Castro, P. Rosales, and S. Marcos, "Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging: A validation study," J. Cataract. Refract. Surg (2007) (to be published). [CrossRef] [PubMed]
  42. R. Mandell, "Locating the corneal sighting center from videokeratography," J. Cataract. Refract. Surg 11, 253-258 (1995).
  43. M. Herzberger, "Colour Correction in Optical Systems and a New Dispersion Formula," Opt. Acta 5, 197-215 (1959).
  44. J. Tabernero, P. Piers, A. Benio, M. Redondo, and P. Artal, "Predicting the optical performance of eyes implanted with IOLs to correct spherical aberration," Invest Ophthalmol Visual Sci 47, 4651-4658 (2006). [CrossRef]
  45. M. Dunne, J. Royston, and D. Barnes, "Posterior corneal surface toricity and total corneal astigmatism," Optom. Vision Sci 68, 708-710 (1991). [CrossRef]
  46. O. Prisant, T. Hoang-Xuan, C. Proano, E. Hernandez, S. Awad, and D. T. Azar, "Vector summation of anterior and posterior corneal topographical astigmatism," J. Cataract. Refract. Surg 28, 1578-1585 (2002). [CrossRef]
  47. S. Barbero, "Refractive power of a multilayer rotationally symmetric model of the human cornea and tear film," J. Opt. Soc. Am. A 23, 1578-1585 (2006). [CrossRef]
  48. K. Kriechbaum, O. Findl, B. Kiss, S. Sacu, V. Petternel, and W. Drexler, "Comparison of anterior chamber depth measurement methods in phakic and pseudophakic eyes," J. Cataract. Refract. Surg 29, 89-94 (2003). [CrossRef] [PubMed]
  49. P. Artal, A. Benito, and J. Tabernero, "The human eye is an example of robust optical design," J. Vision 6, 1-7 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited