OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 5 — Mar. 5, 2007
  • pp: 2598–2606

Metal-enhanced fluorescence of an organic fluorophore using gold particles

Jian Zhang and Joseph R. Lakowicz  »View Author Affiliations


Optics Express, Vol. 15, Issue 5, pp. 2598-2606 (2007)
http://dx.doi.org/10.1364/OE.15.002598


View Full Text Article

Enhanced HTML    Acrobat PDF (787 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Particulate gold films were deposited on glass substrates by vapor deposition. Rabbit immunoglobulin G (IgG) was immobilized by physiosorption and then Alexa Fluor anti Rabbit IgG was bound to the protein-coated surfaces. Fluorescence was enhanced with increasing the Au thickness and reached saturation at 30 nm when Alexa Fluor555 anti IgG was used. We also examined the effect of silica spacers between the gold film and the labeled protein. The maximum enhancement was dependent on the thickness of silica and reach maximum at 10 nm. The maximum increase in intensity was about 6-fold. We also bound Alexa Fluor-680 anti IgG to the protein-coated surface, and the maximum enhancement was about 10-fold.

© 2007 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: September 5, 2006
Revised Manuscript: October 20, 2006
Manuscript Accepted: October 23, 2006
Published: March 5, 2007

Virtual Issues
Vol. 2, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Jian Zhang and Joseph R. Lakowicz, "Metal-enhanced fluorescence of an organic fluorophore using gold particles," Opt. Express 15, 2598-2606 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-5-2598


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. van Dyke, Luminescence immunoassay and molecular applications, (CRC Press, Boca Raton, 1990).
  2. A. Hemmila, Application of fluorescence in immunoassays, (John Wiley & Sons, New York, 1992).
  3. N. J. Walker, "A technique whose time has come," Science 296, 557-559 (2002). [CrossRef] [PubMed]
  4. K. J. Livak, S. J. A. Flood, J. Marmaro, W. Giusti, and K. Deetz, "Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization," PCR Methods Appl. 4, 357-362 (1995). [PubMed]
  5. J. R. Lakowicz, "Radiative decay engineering: Biophysical and biomedical applications," Anal. Biochem. 298, 1-24 (2001). [CrossRef] [PubMed]
  6. K. Sokolov, G. Chumanov, and T. M. Cotton, "Enhancement of molecular fluorescence near the surface of colloidal metal films," Anal. Chem. 70, 3898-3905 (1998). [CrossRef] [PubMed]
  7. G. Chumanov, K. Sokolov, B. W. Gregory, and T. M. Cotton, "Colloidal metal-film as a substrate for surface-enhanced spectroscopy," J. Phys. Chem. 99, 9466-9471 (1995). [CrossRef]
  8. C. D. Geddes, H. Cao, I. Gryczynski, Z. Gryczynski, J. Y. Fang, and J. R. Lakowicz, "Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: Potential applications of indocyanine green to in vivo imaging," J. Phys. Chem. A 107, 3443-3449 (2003). [CrossRef]
  9. B. J. Messinger, K. U. von Raben, R. K. Chang, and P. W. Barber, "Local-fields at the surface of noble-metal microspheres," Phys. Rev. B 24, 649-657 (1981). [CrossRef]
  10. J. R. Lakowicz, "Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission," Anal. Biochem. 337, 171-194 (2005). [CrossRef] [PubMed]
  11. T. Gu, J. K. Whitesell, and M. A. Fox, "Energy transfer from a surface-bound arene to the gold core in ω-fluorentuyl-alkane-1-thiolate monolayer-protected gold clusters," Chem. Mater. 15, 1358-1366 (2003). [CrossRef]
  12. C. Fan, S. Wang, J. W. Hong, G. C. Bazan, K. W. Plaxco, and A. J. Heeger, "Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles," Proc. Natl. Acad. Sci. 100, 6297-6301 (2003). [CrossRef] [PubMed]
  13. P. P. H. Cheng, D. Silvester, G. Wang, G. Kalyuzhny, A. Douglas, and R. W. Murray, "Dynamic and static quenching of fluorescence by 1-4 nm diameter gold monolayer-protected clusters," J. Phys. Chem. B. 110, 4637-4644 (2006). [CrossRef] [PubMed]
  14. G. Schneider, G. Decher, N. Neramourg, R. Praho, M. H. V. Werts, and M. Blanchard-Desce, "Distance-dependent fluorescence quenching on gold nanoparticles ensheathed with layer-by-layer assembled polyelectrolytes," Nano Lett. 6, 530-536 (2006). [CrossRef] [PubMed]
  15. T. L. Jennings, M. P. Singh, and G. F. Strouse, "Fluorescent lifetime quenching near d = 1.5 nm gold nanoparticles: probing NSET validity," J. Am. Chem. Soc. 128, 5462-5467 (2006). [CrossRef] [PubMed]
  16. J. Yguerabide and E. E. Yguerabide, "Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications," Anal. Biochem. 262,137-156 (1998). [CrossRef] [PubMed]
  17. J. Yguerabide and E. E. Yguerabide, "Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications," Anal. Biochem. 262, 157-176 (1998). [CrossRef] [PubMed]
  18. F. D. Stefani, K. Vasilev, N. Bocchio, N. Stoyanova, and M. Kreiter, "Surface-plasmon-mediated single-molecule fluorescence through a thin metallic film," Phys. Rev. Lett. 94, 023005 (2005). [CrossRef] [PubMed]
  19. P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett. 96, 113002 (2006). [CrossRef] [PubMed]
  20. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402 (2006). [CrossRef] [PubMed]
  21. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, "Self-assembled monolayers of thiolates on metals as a form of nanotechnology," Chem. Rev. 105, 1103-1170 (2005). [CrossRef] [PubMed]
  22. A. Ulman, Formation and structure of self-assembled monolayers," Chem. Rev. 96, 1533-1554 (1996). [CrossRef] [PubMed]
  23. N. L. Rosi, and C. A. Mirkin, Nanostructures in biodiagnostics," Chem. Rev. 105, 1547-1562 (2005). [CrossRef] [PubMed]
  24. N. R. Jana, L. Gearheart, and C. J. Murphy, "Wet chemical synthesis of high aspect ratio cylindrical gold nanorods," J. Phys. Chem. B. 105, 4065-4067 (2001). [CrossRef]
  25. A. Gole, and C. J. Murphy, "Polyelectrolyte-coated gold nanorods: synthesis, characterization and immobilization," Chem. Mater. 17, 1325-1330 (2005). [CrossRef]
  26. E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, and J. R. Lakowicz, "Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces," Anal. Biochem. 334, 303-311 (2004). [CrossRef] [PubMed]
  27. G. Laczko, I. Gryczynski, Z. Gryczynski, W. Wiczk, H. Malak, and J. R. Lakowicz, "A 10-GHz frequency-domin fluorometer," Rev. Sci. Instrum. 61, 2331-2337 (1990). [CrossRef]
  28. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer-Verlag, New York, 1998), pp. 136.
  29. L. A. Dick, A. D. McFarland, C. L. Haynes, and R. P. van Duyne, "Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss," J. Phys. Chem. B. 106, 853-860 (2002). [CrossRef]
  30. J. Zhang, J. Malicka, I. Gryczynski, and J. R. Lakowicz, "Metal-enhanced fluoroimmunoassay on a silver film by vapor deposition," J. Phys. Chem. B. 109, 7969-7975 (2005). [CrossRef]
  31. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd Edition (Springer, New York, 2006), pp. 954. [PubMed]
  32. J. Enderlein and T. Ruckstuhl, "The efficiency of surface-plasmon coupled-emission for sensitive fluorescence detection," Opt. Express,  13,8855-8865 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited