OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 6 — Mar. 19, 2007
  • pp: 3342–3347

Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices

Douglas H. Werner, Do-Hoon Kwon, Iam-Choon Khoo, Alexander V. Kildishev, and Vladimir M. Shalaev  »View Author Affiliations


Optics Express, Vol. 15, Issue 6, pp. 3342-3347 (2007)
http://dx.doi.org/10.1364/OE.15.003342


View Full Text Article

Enhanced HTML    Acrobat PDF (133 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Near-infrared metamaterials that possess a reconfigurable index of refraction from negative through zero to positive values are presented. Reconfigurability is achieved by cladding thin layers of liquid crystal both as a superstrate and a substrate on an established negative-index metamaterial, and adjusting the permittivity of the liquid crystal. Numerical results show that the index of refraction for the proposed structure can be changed over the range from -1 to +1.8 by tuning the liquid crystal permittivity from 2 to 6 at a wavelength of 1.4 μm.

© 2007 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(160.4760) Materials : Optical properties

ToC Category:
Metamaterials

History
Original Manuscript: January 9, 2007
Manuscript Accepted: February 26, 2007
Published: March 19, 2007

Citation
Douglas H. Werner, Do-Hoon Kwon, Iam-Choon Khoo, Alexander V. Kildishev, and Vladimir M. Shalaev, "Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices," Opt. Express 15, 3342-3347 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-6-3342


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A.�Hasegawa and W. F.�Brinkman, "Tunable coherent IR and FIR sources utilizing modulational instability," IEEE J. Quantum Electron.�QE-16, 694-697 (1980). [CrossRef]
  2. M.�Nakazawa, K.�Suzuki, and H. A.�Haus, "Modulational instability oscillation in nonlinear dispersive ring cavity," Phys. Rev. A�38, 5193-5196 (1988). [CrossRef] [PubMed]
  3. K.�Suzuki, M.�Nakazawa, and H. A.�Haus, "Parametric soliton laser," Opt. Lett.�14, 320-322 (1989). [CrossRef]
  4. D. K.�Serkland and P.�Kumar, "Tunable fiber-optic parametric oscillator," Opt. Lett.�24, 92-94 (1999). [CrossRef]
  5. S.�Coen and M.�Haelterman, "Continuous-wave ultrahigh-repetition-rate pulse-train generation through modulational instability in a passive fiber cavity," Opt. Lett.�26, 39-41 (2001). [CrossRef] [PubMed]
  6. M. E.�Marhic, K. K. Y.�Wong, L. G.�Kazovsky, and T. E.�Tsai, "Continuous-wave fiber optical parametric oscillator," Opt. Lett.�27, 1439-1441 (2002). [CrossRef] [PubMed]
  7. S.�Saito, M.�Kishi, and M.�Tsuchiya, "Dispersion-flattened-fibre optical parametric oscillator for wideband wavelength-tunable ps pulse generation," Electron. Lett.�39, 86-88 (2003). [CrossRef]
  8. J. E.�Sharping, M.�Fiorentino, P.�Kumar, and R. S.�Windeler, "Optical parametric oscillator based on four-wave mixing in microstructure fiber," Opt. Lett.�27, 1675-1677 (2002) [CrossRef] [PubMed]
  9. J.�Lasri, P.�Devgan, R.�Tang, J. E.�Sharping, and P.�Kumar, "A microstructure-fiber-based 10-GHz synchronized tunable optical parametric oscillator in the 1550-nm regime," IEEE Photon. Technol. Lett.�15, 1058-1060 (2003). [CrossRef] [PubMed]
  10. C. J. S.�de Matos, J. R.�Taylor, and K. P.�Hansen, "Continuous-wave, totally fiber integrated optical parametric oscillator using holey fiber," Opt. Lett.�29, 983-985 (2004).
  11. Y.�Deng, Q.�Lin, F.�Lu, G. P.�Agrawal, and W. H.�Knox, "Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber," Opt. Lett.�30, 1234-1236 (2005). [CrossRef]
  12. J. S. Y.�Chen, S. G.�Murdoch, R.�Leonhardt, and J. D.�Harvey, "Effect of dispersion fluctuations on widely tunable optical parametric amplification in photonic crystal fibers," Opt. Express�14, 9491-9501 (2006). [CrossRef]
  13. C.�Lin, W. A.�Reed, A. D.�Pearson, and H. T.�Shang, "Phase matching in the minimum-chromatic-dispersion region of single-mode fibers for stimulated four-photon mixing," Opt. Lett.�6, 493-495 (1981). [CrossRef]
  14. S.�Pitois and G.�Millot, "Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber," Opt. Commun.�226, 415-422 (2003). [CrossRef]
  15. M. E.�Marhic, K. K. Y.�Wong, and L. G.�Kazovsky, "Wide-band tuning of the gain spectra of one-pump fiber optical parametric amplifiers," IEEE J. Sel. Top. Quantum Electron.�10, 1133-1141 (2004).
  16. J. D.�Harvey, R.�Leonhardt, S.�Coen, G. K. L.�Wong, J. C.�Knight, W. J.�Wadsworth, and P. St. J.�Russell, "Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber," Opt. Lett.�28, 2225-2227 (2003). [CrossRef]
  17. A. Y. H.�Chen, G. K. L.�Wong, S. G.�Murdoch, R.�Leonhardt, J. D.�Harvey, J. C.�Knight, W. J.�Wadsworth, and P. St. J.�Russell, "Widely tunable optical parametric generation in a photonic crystal fiber," Opt. Lett.�30, 762-764 (2005).
  18. G.�Cappellini and S.�Trillo, "Third-order three-wave mixing in single-mode fibers: exact solutions and spatial instability effects," J. Opt. Soc. Am. B�8, 824-838 (1991).
  19. M. E.�Marhic, K. K. Y.�Wong, M. C.�Ho, and L. G.�Kazovsky, "92% pump depletion in a continuous-wave one-pump fiber optical parametric amplifier," Opt. Lett.�26, 620-622 (2001).
  20. J.�Hansryd, P. A.�Andrekson, M.�Westlund, J.�Li, and P. O.�Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron.�8, 506-520 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited